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Abstract. In the recent years, deep learning techniques have shown great success in various tasks related
to inverse problems, where a target quantity of interest can only be observed through indirect
measurements by a forward operator. Common approaches apply deep neural networks in a post-
processing step to the reconstructions obtained by classical reconstruction methods. However, the
latter methods can be computationally expensive and introduce artifacts that are not present in the
measured data and, in turn, can deteriorate the performance on the given task. To overcome these
limitations, we propose a class of equivariant neural networks that can be directly applied to the
measurements to solve the desired task. To this end, we build appropriate network structures by
developing layers that are equivariant with respect to data transformations induced by well-known
symmetries in the domain of the forward operator. We rigorously analyze the relation between
the measurement operator and the resulting group representations and prove a representer theorem
that characterizes the class of linear operators that translate between a given pair of group actions.
Based on this theory, we extend the existing concepts of Lie group equivariant deep learning to
inverse problems and introduce new representations that result from the involved measurement
operations. This allows us to efficiently solve classification, regression or even reconstruction tasks
based on indirect measurements also for very sparse data problems, where a classical reconstruction-
based approach may be hard or even impossible. We illustrate the effectiveness of our approach in
numerical experiments and compare with existing methods.
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1. Introduction. Indirect measurements naturally occur in various applications, where a
quantity of interest cannot be observed directly but only through effects of certain processes
leading to an inverse problem. One prominent example is that of computerized tomography,
where the goal consists in imaging the interior of a scanned object by measuring and processing
the attenuation of X-rays travelling through the object under investigation. Mathematically,
the common setting in inverse problems is the observation of a signal x through indirect
measurements y = A x with forward operator A . One particular challenge is that inverse
problems are typically ill-posed in the sense that no continuous inverse A −1 exists so that
small noise in the measured data y can lead to large errors in the reconstructed signal x.

Recently, deep learning approaches based on neural networks have shown remarkable re-
sults in various tasks in the context of inverse problems, like classification or regression tasks.
Such methods typically include the solution of the inverse problem. In contrast to this, the idea
presented in this work is to construct data-efficient neural network structures that operate di-
rectly on the measured data y and avoid the need for classical reconstruction or backprojection
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Figure 1. The setting of our approach, illustrated for 2-angle fan-beam Radon measurements of tubes: sym-
metries in Y (right) are induced by well-known group representations in the physical space X (left). However,
the data is measured only at a finite set of sensor points V , depicted by gray circles.

into the original signal domain. For this purpose, we follow the concept of equivariant neural
networks that leverage the symmetries that may be present in the measurements y.

This might become useful especially in settings where only very sparse measurement data
is available and, as a result, good reconstructions without additional data-knowledge are
infeasible. A motivating example for our work is the thickness measurement of tubes using a
sparse two-angle fan beam CT geometry, as displayed in Figure 1. In this context, one cannot
expect to obtain good reconstructions (which could then be handled by learned regression
models) by classical methods. However, a full reconstruction is not needed, only scalar values
for the minimal and maximal thickness are desired. The idea we follow in this paper is then
to circumvent any classical reconstruction and construct an appropriate learned regression
model that takes the sparse sinogram data as an input.

On this path, several theoretical and numerical challenges arise. First of all, to construct
equivariant networks, a characterization of sensible symmetry transforms on the measured
signals y is required. Due to the discrete nature of measurements in practice, symmetries often
occur only in an approximate way, requiring a modelling scheme that allows to characterize
the underlying continuous symmetries. Finally, one has to construct neural networks that
respect these symmetries while operating on the discrete measured data. In this work, we will
tackle all these challenges and demonstrate a successful construction of data-efficient network
structures that operate on indirect measurements.

1.1. Literature Review. The exploitation of symmetries to improve the generalization
performance of deep learning models has been a large field of research during the last years.
Approaches include data augmentation [23], specialized training schemes or loss functions [4,
11] and specially tailored equivariant network structures, on which we focus in the following.
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Motivated by the success of convolutional neural networks (CNNs), the research on gener-
alized group-equivariant neural network architectures has led to network structures that show
promising results on various types of data [13, 21]. Group-equivariance is commonly per-
ceived as a strong inductive bias for the construction of data-efficient network architectures.
Its success is believed to rely on two basic properties [21]: On the one hand, equivariance in-
corporates prior knowledge on the data to provide guarantees for the extrapolation of results
to unseen transformed data points and enables parameter-sharing. On the other hand, the
non-trivial kernel size of convolutions together with downsampling layers allow to learn local
features and combine those features on coarser scales.

In 2016, Cohen and Welling [7] constructed generalized CNNs for image processing that
are equivariant with respect to discrete groups. Since then, several extensions and variants
have be proposed. For example, in [8] the authors develop memory-efficient steerable convolu-
tion kernels based on group representation theory. Lately, Finzi et al. [13] constructed neural
networks that are equivariant with respect to arbitrary Lie groups. To handle the continuous
groups on point clouds, they parametrized convolution kernels by small fully-connected net-
works. Since we aim to treat arbitrary discretizations, we also follow this approach for the
construction of equivariant networks.

In inverse problems, a vast range of classical theory and numerical methods concerned
with the reconstruction of x from possibly noisy data yδ = y + ηδ exists [12, 19]. Symmetries
have been a central tool in the development of methods, ranging from steerable wavelets [5]
to regularization by equivariance [28].

During the last years, diverse deep learning methods have shown to improve the quality of
reconstructions [1, 25]. The incorporation of symmetries in such reconstructions turned out
to be a valuable prior and has been studied in various approaches [2, 4, 9, 28, 3].

In [2], the authors use an equivariant neural network architecture as proximal operator
to improve the reconstruction quality obtained by learned iterative schemes. In this con-
text, possible issues caused by non-equivariant measurement operators that partially regard
information are shortly discussed. On the contrary, the reconstruction approach in [4] makes
explicit use of this property to design specialized loss functions for a self-supervised learning
strategy for end-to-end reconstructions. In our approach, this effect is handled by the sepa-
ration of continuous forward measurement operators and their partial evaluation, e.g., due to
discretization.

Other deep learning based reconstruction approaches include symmetry knowledge by the
direct use of equivariant networks for post-processing of classical reconstructions [32] or in
the construction of learned regularizations in variational methods [28]. To the best of our
knowledge, none of the existing works has tackled the problem of directly handling induced
symmetries in indirect measurements.

1.2. Overview of the Paper. The outline of this paper is as follows. In Section 2 we ex-
plain the general setting and introduce the necessary mathematical preliminaries for the analy-
sis of group symmetries in indirect measurements in a compact way. Section 3 is theoretical
main part of this paper and contains two mathematical results that investigate the connection
between measurement operators and the symmetries that may appear in the measured data.
In particular, Theorem 3.2 sharply characterizes all linear operators that translate between
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given symmetry transforms. For illustration, we apply this result to the classical Radon op-
erator that models the measurement process in computerized tomography. Extending on this
knowledge, in Section 4 we build equivariant neural networks with respect to new types of
transforms that have not been tackled before and treat the challenges that appear in the
context of applied inverse problems, where only partial measurements are available. Finally,
in Section 5 we apply our constructed networks that can operate directly on the measured
data and perform numerical experiments on classification and regression tasks, where we are
able to show improved generalization properties when compared to existing methods that are
based on learned post-processing of classical reconstructions.

2. Mathematical Setting and Preliminaries.

2.1. General Setting. In this paper, we deal with linear inverse problems y = A x that
can be modelled by a continuous linear forward operator

A : X → Y

mapping between spaces of test functions X = D(ΩX ,KnX ) on some domain ΩX ⊆ RdX and
Y = D(ΩY ,KnY ) on some domain ΩY ⊆ RdY , where K ∈ {R,C}. Since we focus on scalar data
in the application, we will abbreviate notation and mostly omit the signal range dimension,
i.e. we write X = D(ΩX ), Y = D(ΩY). Keep in mind that we implicitly also treat vector field
transforms and, hence, kernels are matrix-valued. For dealing with discrete measurements,
we will add a discretization scheme to this setting in Section 4.

The ultimate aim of our work is to construct artificial neural networks

Nθ : Y → Z

that can be efficiently applied to the measured data and optimized to solve several post-
processing tasks while avoiding explicitly solving the inverse problem in a first step. To this
end, we will make use of symmetries in the measurement space Y that are known in the
underlying source space X and transformed by the forward operator A .

2.2. Symmetries and Group Representations. In many cases, continuous local or global
symmetries of a source signal x ∈ X can be described by means of a known representation P,
i.e., a linear homomorphism P : G → {X → X}, of a lie group G on X . To emphasize the
underlying space X we also write P ≡ PX . We call an operator B : X → Y equivariant with
respect to a representation PX on X if and only if a representation PY on Y exists such that
for all x ∈ X and g ∈ G we have

PY [g]B(x) = B(PX [g]x).

A common type of representations P on function spaces X ⊆ {Ω → Rn} are so-called
domain transforms, which are induced by a proper lie group action π, i.e., a possibly non-
linear homomorphism π : G→ {Ω → Ω}, acting on the functions x ∈ X by transforming their
domain Ω so that

(P[g]x)(u) = x(π[g]−1(u)).
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Here, a group action is called proper if the mapping G× Ω → Ω× Ω, (g, u) 7→ (π[g](u), u) is
proper, i.e., pre-images of compact sets are compact.

To deal with more general transforms that can appear in measurements, we introduce the
notion of generalized domain transforms, which are representations that can additionally act
locally and linearly on the range of the functions via

(P[g]x)(u) = p[g](u)x(π[g]−1(u)),

where p : G→ C∞(ΩX ,GL(nX ,K)) satisfies p[gh](u) = (P[g]p[h])(u) and P[e] = InX , which
is also the sufficient and necessary condition for the induced mapping P to define a group
representation on X . In this case we also write P ≡ P(π, p) to emphasize the mappings
π : G → {Ω → Ω} and p : G → C∞(ΩX ,GL(nX ,K)). While representations in the range
of functions are also considered for vector fields e.g. in [6], the symmetries that appear in
indirect measurements are new in the way that they can contain local variations also for scalar
signals. This behaviour is properly modelled by the introduced class of representations.

All (generalized) domain transforms are primarily characterized by the action of π on
the domain Ω. If for all u, u0 ∈ Ω there exists g ∈ G such that π[g](u0) = u, the set Ω is
called a homogeneous space of π. In this case, the domain Ω can be parametrized by the group
elements once an origin u0 ∈ Ω has been fixed. To this end, we consider the stabilizer subgroup

Nπ(u0) = {n ∈ G |π[n](u0) = u0}.

of all elements that keep the origin fixed. Then, the set G/Nπ(u0) = {gNπ(u0) | g ∈ G} of left
cosets can be identified with the domain, i.e., we have G/Nπ(u0) ∼= Ω. This observation will
be an important tool to establish a relation between equivariant operators and convolutions.
For the sake of brevity, in the following we write gu for a representative of the group elements
that move the origin u0 to u, i.e., π[gu](u0) = u, and specify its choice once necessary.

3. Mathematical Results. As the overall goal of this work is to define equivariant neural
networks on the measurements A x, x ∈ X , it is desirable to describe the symmetries in the
measurement space Y. Given a symmetry transform PX on the source space X , we consider
the transforms that are induced by the measurement, i.e., for all g ∈ G, we search for a
mapping PY [g] : Rg(A ) → Rg(A ) that satisfies

(3.1) PY [g]A x = A PX [g]x

for all x ∈ X . The following visibility-condition gives a sharp criterion for the existence and
properties of such a mapping.

Theorem 3.1 (Visibility-condition). For a group representation PX on X and a measure-
ment operator A : X → Y the following statements are equivalent.

(i) The mapping PY [g] : Rg(A ) → Rg(A ) given by (3.1) is well-defined for all g ∈ G.
(ii) Equation (3.1) defines a group representation PY : G→ (Rg(A ) → Rg(A )) on Y.
(iii) We have Ker(A PX [g]) = Ker(A ) for all g ∈ G.

Proof. (i) =⇒ (ii): Let PY : G → (Rg(A ) → Rg(A )) be defined via (3.1). Then, PY is
a group homomorphism as, for y = A x ∈ Rg(A ), we have PY [e]y = PY [e]A x = A x = y
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and, for arbitrary g, h ∈ G, direct computations show that

PY [gh]y = PY [gh]A x = A PX [gh]x = A PX [g]PX [h]x

= PY [g]PY [h]A x = PY [g]PY [h]y.

Moreover, for g ∈ G the mapping PY [g] : Rg(A ) → Rg(A ) is linear as for λ1, λ2 ∈ R and
y1 = A x1, y2 = A x2 ∈ Rg(A ) holds that

PY [g](λ1y1 + λ2y2) = PY [g]A (λ1x1 + λ2x2) = A PX [g](λ1x1 + λ2x2)

= λ1A PX [g]x1 + λ2A PX [g]x2 = λ1PY [g]y1 + λ2PY [g]y2.

(ii) =⇒ (iii): Let PY : G → (Rg(A ) → Rg(A )) be the above group representation and
let g ∈ G such that

Ker(A PX [g]) ̸= Ker(A ).

Then, there is x ∈ Ker(A ) with x /∈ Ker(A PX [g]) or x̂ ∈ Ker(A PX [g]) with x̂ /∈ Ker(A ).
In the first case, however, we have

A PX [g]x = PY [g]A x = 0

in contradiction to x /∈ Ker(A PX [g]). In the second case, we similarly get the contradiction

A x̂ = A PX [g−1]PX [g]x̂ = PY [g−1]A PX [g]x̂.

(iii) =⇒ (i): Let Ker(A PX [g]) = Ker(A ) for all g ∈ G and let y = A x1 = A x2 for
x1, x2 ∈ X . Then, x1 − x2 ∈ Ker(A ) = Ker(A PX [g]) and, consequently, for arbitrary g ∈ G
follows that

A PX [g]x1 = A PX [g]x2 =⇒ PY [g]A x1 = PY [g]A x2,

which shows that PY [g] : Rg(A ) → Rg(A ) is well-defined.

The sharp condition Ker(A PX [g]) = Ker(A ) for all g ∈ G can be interpreted in terms
of the visibility of information in the measurements: If a feature in the source data can
be made visible or invisible in the measurement by the application of a group transform,
it is impossible to characterize A PX [g]x only in terms of x and g. Otherwise, the output
can be determined solely from x and g and, in addition, behaves well in the sense of a group
representation structure. An example for the violation of the visibility condition due to partial
measurements is depicted in Figure 2. Due to the previous theorem, classical reconstructions
that do not incorporate any additional assumptions on the data cannot be equivariant with
respect to group representations in the source space. As a consequence, we will focus on
applications in which the continuous full measurement operator can be modelled such that it
satisfies the visibility-condition. Violations of the visibility-condition that are caused by the
discretization of the operator are discussed in more detail in Section 4.

In a finite-dimensional setting, the authors of [4] state a related condition, where the
non-fulfilment of the visibility-condition is an explicit prerequisite for their approach to be of
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Figure 2. Illustration how classical reconstructions (right) of an MNIST digit based on sparse measurements
(center, visualized by circles) behave under transformations from R2 × GL+ (left). In this case, the resulting
representation in the full sinograms (center) is a generalized domain transform.

advantage for reconstruction. This is in contrast to our approach, where equivariance is built
explicitly into the network structure and requires the fulfilment of the visibility condition.

Our next goal is to exactly characterize the class of measurement operators that transform
between certain group representations. For this purpose, we restrict ourselves to the case
of generalized domain transforms as group representation in the source space. In practice,
the representations in the source space are well-known and the notion of generalized domain
transforms covers all symmetries that are commonly considered in the known physical domain,
cf. [7, 13, 6]. In addition, we assume that the domain ΩX of the input signal is a homogeneous
space of the corresponding group action on X . This assumption, however, can be weakened
to obtain a more general but weaker result by treating the domain as a union of orbits, which
are homogeneous spaces on their own. To treat general linear measurement operators with a
priori unknown induced symmetries, we do not restrict the representations PY in any way.

In the following, for a distribution a ∈ D′(ΩX ) and a function x ∈ D(ΩX ), we use the
notion

a(x) =

∫
ΩX

a(u)x(u) du.

For a group representation PX : G→ (D(ΩX ) → D(ΩX )) we define its adjoint representation
P∗

X : G→ (D(ΩX ) → D(ΩX )) via∫
ΩX

(P∗
X [g]x)(u) φ(u) du =

∫
ΩX

x(u) (PX [g]φ)(u) du ∀ φ ∈ D(ΩX )
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and, with this, for a ∈ D′(ΩX ) and g ∈ G we define PX [g]a ∈ D′(ΩX ) via

PX [g]a(x) = a(P∗
X [g]x) ∀ x ∈ D(ΩX ).

Theorem 3.2 (Equivariant measurement operator is a convolution.). Let PX ≡ PX (πX , pX )
be a generalized domain transform such that ΩX is a homogeneous space of πX and let
A : D(ΩX ) → D(ΩY) be a continuous linear measurement operator. Then, the equivariance
condition (3.1) holds if and only if A is given by a generalized convolution operator

(A x)(v) = (a ∗X→Y x)(v)

:=

∫
ΩX

(PY [gu] a)(v) pX [g−1
u ](u0)x(u) |det(DπX [gu](u0))|−1 du,

(3.2)

where the distributional kernel a ∈ D′(ΩY) fulfils

(3.3) (PY [gun] a)(v) = (PY [gu] a)(v) pX [n](u0) |det(DπX [n](u0))|

in the sense of distributions for all n ∈ NπX (u0).

Before we proceed to the proof of this theorem, we wish to pass the following remarks.
The condition (3.3) guarantees that the representation in equation (3.2) is independent of

the choice of the representative gu of the group elements that move u0 to u.
The theorem has several implications for the handling of symmetries in inverse problems.

For instance, in the setting of indirect measurements, it enables us to deduce the induced
representations from integral measurement operators and to exactly state the set of operators
that translate between these symmetries.

The expression generalized convolution is motivated by the following remark.

Remark 3.3. If PX ≡ PX (πX ) and PY ≡ PY(πY) are conventional domain transforms,
representation (3.2) reads

(A x)(v) =

∫
ΩX

a(πY [g−1
u ](v)) x(u) | det(DπX [gu](u0))|−1 du.

Moreover, condition (3.3) reduces to

a(πY [gun]−1v) = a(πY [gu]−1(v)) |det(DπX [n](u0))| ∀ n ∈ NπX (u0)

and, hence, constrains the kernel along the orbits of the stabilizer of πX in Y. In particular,
the special case ΩX = Rd = ΩY with origin u0 = 0 and translation group G = Rd with gu = u
and group action π[g](u) = u+ g recovers the classical convolution operator

(A x)(v) =

∫
Rd

a(v − u) x(u) du

with convolution kernel a ∈ D′(Rd).
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For the construction of equivariant neural networks, Theorem 3.2 characterizes the struc-
ture of all possible linear layers. In this context, a special case of this theorem for discrete
domain transforms is well-known in the literature and has been proven, e.g., in [21]. In [6],
the authors embed a variant of this theorem into a more general and group theoretical frame-
work of Mackey functions for equivariant neural networks, where their notion of transforms on
vector fields can be viewed as a realization of our concept of generalized domain transforms.
However, in contrast to this, we provide a rigorous proof in the context of function spaces,
where we generalize to distributional kernels, which is more suitable for forward operators in
inverse problems. In addition, compared to existing settings, we do not restrict the group
transforms in the output space Y in any way. This enables us to treat symmetries of all mea-
surement operators (that satisfy the visibility-condition) for known transforms in the source
space X . Example 3.4 below will illustrate the consequences of this theorem for the special
case of the classical Radon transform of functions on R2.

In Section 4, we will construct equivariant linear layers that are suited for the application
to indirect measurements and characterized by our above theorem, which is formulated in the
continuous setting.

Proof of Theorem 3.2. In the following, for the sake of brevity, we set

ω[g](u) = | det(DπX [g](u))|

for g ∈ G and u ∈ ΩX .
For the proof of the ’if’-direction let a ∈ D′(ΩX ) satisfy (3.3). Then, we can choose any

representative gu ∈ guNπX (u0) and define A : D(ΩX ) → D(ΩY) via (3.2). To verify (3.1),
we compute the image of a transformed x ∈ D(ΩX ) under A by a change of variables in the
distribution and use the fact that ω[gh](u) = ω[g](πX [h](u)) ω[h](u). Then, direct calculations
indeed show that

(a ∗X→Y PX [g]x)(v) =
∫
ΩX

(PY [gu] a)(v) (PX [g−1
u g]x)(u0) ω[gu](u0)

−1 du

=

∫
ΩX

(PY [ggu] a)(v) (PX [g−1
u ]x)(u0) ω[ggu](u0)

−1 ω[g](u) du

=

∫
ΩX

(PY [g]PY [gu] a)(v) (PX [g−1
u ]x)(u0) ω[gu](u0)

−1 du

= (PY [g](a ∗X→Y x))(v).

For the proof of the ’only if’-direction let A : D(ΩX ) → D(ΩY) satisfy the equivariance
condition (3.1). Due to the continuity of A and the Schwartz kernel theorem [17], we have
the representation

(A x)(v) =

∫
ΩX

A(u, v)x(u) du,

where A(·, v) ∈ D′(ΩX ) is a distribution for every v ∈ ΩY . Let (δk)k∈N be a Dirac sequence of
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smooth functions δk ∈ D(ΩX ) and, for k ∈ N, consider the approximate kernel

Ak(w, v) =

∫
ΩX

A(u, v) (PX [gw] δk)(u) pX [g
−1
w ](u0) ω[gw](u0)

−1 du,

which satisfies Ak(·, v) ∈ D(ΩX ) for all v ∈ ΩY as well as Ak(u, ·) ∈ D(ΩY) for all u ∈ ΩX .
The induced operator Ak : D(ΩX ) → D(ΩY) can be rewritten as

(Akx)(v) =

∫
ΩX

Ak(w, v)x(w) dw

=

∫
ΩX

∫
ΩX

A(u, v) (PX [gw] δk)(u) pX [g
−1
w ](u0) ω[gw](u0)

−1 du x(w) dw

=

∫
ΩX

A(u, v)

∫
ΩX

(PX [gw] δk)(u) pX [g
−1
w ](u0) x(w)ω[gw](u0)

−1 dw du,

where we use Fubini’s theorem for distributions [29, Theorem 40.4]. By considering

(δk ∗X→X x)(u) =

∫
ΩX

(PX [gw] δk)(u) pX [g
−1
w ](u0) x(w)ω[gw](u0)

−1 dw,

we obtain the representation

Akx = A (δk ∗X→X x).

Standard computations show the convergence δk ∗X→X x → x in D(ΩX ) and by continuity of
A follows that

Akx
k→∞−−−→ A x.

Using the equivariance property (3.1) of A and the equivariance of ∗X→X that we have already
shown in the first part of this proof, we also have

AkPX [g]x = A (δk ∗X→X PX [g]x) = A PX [g] (δk ∗X→X x) = PY [g]A (δk ∗X→X x) = PY [g]Akx

and a change of variables implies that∫
ΩX

Ak(πX [g](u), v) pX [g](πX [g](u)) x(u)ω[g](u) du =

∫
ΩX

(PY [g]Ak)(u, v)x(u) du.

Since this holds true for all x ∈ D(ΩX ), we obtain for all g ∈ G the condition

Ak(u, v) = (PY [g]−1Ak)(πX [g](u), v) pX [g](πX [g](u)) ω[g](u).

By choosing g = g−1
u and defining ak := Ak(u0, ·) ∈ D(ΩY), we derive at

Ak(u, v) = (PY [gu] ak)(v) pX [g
−1
u ](u0) ω[gu](u0)

−1,
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applying the inverse function rule in ω. Since this holds true for all choices gu ∈ guNπX (u0),
the ak have to fulfil

(PY [gun] ak)(v) = (PY [gu] ak)(v) pX [g
−1
u ](u0) pX [(gun)−1](u0)

−1 |det(DπX [n](u0))|
= (PY [gu] ak)(v) pX [n](u0) | det(DπX [n](u0))|.

(3.4)

for all n ∈ NπX (u0). Finally, taking the limit k → ∞ gives

(A x)(v) = lim
k→∞

∫
ΩX

(PY [gu] ak)(v) pX [gu](u)
−1 x(u) ω[gu](u0)

−1 du

=

∫
ΩX

(PY [gu] a)(v) pX [gu](u)−1 x(u) ω[gu](u0)
−1 du,

where a ∈ D′(ΩY) is the limit of (ak)k∈N in D′(ΩY) and u 7→ (PY [gu] a)(v) has to be under-
stood as a distribution in D′(ΩX ) for each v ∈ ΩY . Similarly, we obtain the condition (3.3)
for a by taking the limit k → ∞ in (3.4) in distributional sense.

To close this section we now discuss the Radon transform as an illustrating example.

Example 3.4. For ΩX = R2 and ΩY = R×[0, 2π) the Radon operator R : D(ΩX ) → D(ΩY)
models the measurement process in computerized tomography, cf. [24], and is defined as

(Rx)(r, φ) =

∫
R2

δ(uT φ⃗− r)x(u) du,

integrating over the line {u ∈ R2 | uT φ⃗ = r} with normal direction φ⃗ = (cos(φ), sin(φ))T ∈ S1.
We consider the roto-translation group G = R2 × [0, 2π) = SE(2) with operation

(s1, γ1) · (s2, γ2) = (s1 +R(γ1)s2, γ1 + γ2)

where

R(γ) =

(
cos γ − sin γ
sin γ cos γ

)
.

A group action πX on ΩX = R2 can be defined via

πX [(s, γ)](u) = R(γ)u+ s

so that ΩX is a homogeneous space of πX and fixing the origin u0 = 0 ∈ ΩX we obtain

NπX (u0) = {(0, γ) | γ ∈ [0, 2π)}.

Straight-forward computations show that

(R(x ◦ πX [(s, γ)−1]))(r, φ) = (Rx)(r − sT φ⃗, φ− γ)

and, hence, we define the group action πY on ΩY = R× [0, 2π) via

πY [(s, γ)](r, φ) = (r + sT (
−−−→
φ+ γ), φ+ γ).
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With this, ΩY is a homogeneous space of πY . For u ∈ ΩX we choose gu = (u, 0) ∈ G and
obtain πY [g−1

u ](r, φ) = (r−uT φ⃗, φ) as well as det(DπX [gu](u0)) = 1. As a result, Theorem 3.2
implies that any bounded linear operator A : D(ΩX ) → D(ΩY) that transforms translations
and rotations exactly like the Radon operator R can be written as

(A x)(r, φ) =

∫
R2

a(r − uT φ⃗, φ)x(u) du

with a ∈ D′(ΩY). Furthermore, using (gun)
−1 = (−R(−γ)u,−γ) for n = (0, γ) ∈ NπX (u0),

the condition on a reads

a(r − (R(−γ)u)T (−−−→φ− γ), φ− γ) = a(r − uT φ⃗, φ) ⇐⇒ a(r − uT φ⃗, φ− γ) = a(r − uT φ⃗, φ)

for arbitrary γ ∈ [0, 2π) so that a ≡ a(r) is independent of the angle φ ∈ [0, 2π). Therefore,
all possible operators are given by

(A x)(r, φ) =

∫
R2

a(r − uT φ⃗)x(u) du

for some distribution a ∈ D′(R) and we obtain the Radon operator itself for a = δ.
To also include anisotropic scaling, we now consider the group G = R2 ×GL+(2,R) of all

invertible affine transforms with positive determinant, for which we define the group operation
via

(s1, A1) · (s2, A2) = (s1 +A1s2, A1A2)

and the group representation PX on X via

(PX [(s,A)]x)(u) = x(πX [(s,A)]−1(u)).

with

πX [(s,A)](u) = Au+ s.

Then, ΩX is a homogeneous space of πX and fixing the origin u0 = 0 ∈ ΩX we obtain

NπX (u0) = {(0, A) | A ∈ GL+(2,R)}.

Standard computations show that

(RPX [(s,A)]x)(r, φ) =
∫
R2

δ(uT φ⃗− r) x(A−1(u− s)) du =
det(A)

α(A,φ)
(Rx)

(r − sT φ⃗

α(A,φ)
, θ(A,φ)

)
with

α(A,φ) = ∥AT φ⃗∥2 and θ(A,φ) = arccos

(
(AT φ⃗)1
α(A,φ)

)
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so that

θ⃗(A,φ) =
AT φ⃗

∥AT φ⃗∥2
.

Hence, we define the group representation PY on Y via

(PY [(s,A)]y)(r, φ) = pY [(s,A)](r, φ) y(πY [(s,A)]−1(r, φ))

where

pY [(s,A)](r, φ) =
det(A)

α(A,φ)
and πY [(s,A)](r, φ) =

(r + sTA−T φ⃗

α(A−1, φ)
, θ(A−1, φ)

)
so that PY is a generalized domain transform and

πY [(s,A)]−1(r, φ) =
(r − sT φ⃗

α(A,φ)
, θ(A,φ)

)
.

For illustration, Figure 2 shows the action of PY on sinograms of handwritten digits. For
u ∈ ΩX we choose gu = (u, I2) ∈ G and obtain pY [gu](r, φ) = 1, πY [gu]−1(r, φ) = (r− uT φ⃗, φ)
as well as det(DπX [gu](u0)) = 1. Consequently, Theorem 3.2 implies again that any bounded
linear operator A : D(ΩX ) → D(ΩY) that transforms invertible affine transforms with positive
determinant exactly like the Radon operator R can be written as

(A x)(r, φ) =

∫
R2

a(r − uT φ⃗, φ)x(u) du

with a ∈ D′(ΩY). Furthermore, using (gun)
−1 = (−A−1u,A−1) for n = (0, A) ∈ NπX (u0), the

condition on a reads

det(A)

∥AT φ⃗∥2
a
(r − uT φ⃗

∥AT φ⃗∥2
, θ(A,φ)

)
= a(r − uT φ⃗, φ) det(A)

⇐⇒ a
(r − uT φ⃗

∥AT φ⃗∥2
, θ(A,φ)

)
= ∥AT φ⃗∥2 a(r − uT φ⃗, φ)

for arbitrary A ∈ GL+(2,R) so that a ≡ a(r) is independent of the angle φ ∈ [0, 2π). Moreover,
a ∈ D′(R) is positively homogeneous of degree −1 and, according to [15, Chap. 1, § 3.11],
there are constants c1, c2 ∈ R such that

a = c1 χ
−1 + c2 δ,

where

χ−1(ψ) =

∫
R

ψ(r)− ψ(0)

r
dr for ψ ∈ D(R).

In summary, the symmetries of the Radon operator characterize most of its behaviour
and leave only very few degrees of freedom for operators that share the same symmetry
properties. This might become useful, e.g., in the construction of end-to-end reconstruction
schemes, which could benefit from an encoded reverse conversion of symmetries.
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4. Equivariant Layers. Now that we have characterized the group representation PY on
the measurements in Y, we aim for the construction of equivariant neural networks Nθ : Y → Z
such that

PZ [g]Nθ(y) = Nθ(PY [g] y) ∀ y ∈ Y, g ∈ G.

Here, the space Z and representation PZ have to be chosen depending on the application. In
reconstruction or semantic segmentation tasks, the natural choice is Z = X and PZ = PX .
Learned preprocessing could be obtained by Z = Y and PZ = PY . Invariant classification
tasks require PZ [g] = Id independently of g ∈ G. Based on the findings in [7], it is however
useful to construct invariance only in the last layer of the network and use more complex
group representations in the inner hidden part.

In the continuous setting studied previously, the construction of equivariant linear neural
network layers for generalized domain transforms is completely characterized by Theorem 3.2.
In practical applications, however, we do not only need a discretization for numerical purposes
but also have to deal with a finite and possibly very limited number of measurement points.
We therefore model the whole indirect measurement process as SV ◦ A , where SV defines a
sampling scheme

SV : Y → YV

evaluating a continuous signal y ∈ Y at discrete measurement points V = {vi}i=1,...,n ⊂ ΩY .
In this section, we will construct neural networks that are (approximately) equivariant to

generalized domain transforms as representations in the input and output of all layers and
that can be applied directly to arbitrary data generated by indirect measurements. Figure 3
gives an overview of the setting and the involved spaces.

4.1. The Challenge of Discrete Equivariance. When trying to treat equivariance in dis-
crete measurements, the first problem that occurs is the definition of appropriate group rep-
resentations on the discrete data. Since the data is only partially captured, the discretized
operators violate the visibility-condition in Theorem 3.1. As a result, it is not clear how
general group transforms in the input can be handled in the measurements.

A possible way out that can also be implemented numerically is to be satisfied with
equivariance only with respect to a discrete subgroup GV ⊂ G, which would result in an
approach similar to [21] and yields a direct generalization of classical CNNs. However, this
requires the measurements to lie on a grid that fits the structure of the subgroup. More
precisely, to handle the measurement points V it is necessary that we have the set equality

πY [GV ](v0) = V

for a suitably chosen v0 ∈ ΩY . In general, such a subgroup GV does not exist and, hence, this
idea can only be applied for very specific sampling schemes SV . A numerically more complex
but also more general solution is to construct networks that are approximately equivariant
to the representation PY on the whole Lie group G and can operate on arbitrary point
clouds, extending the work in [13]. Following this approach, only the continuous measurement
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Figure 3. Overview of our approach, including the measurement scheme as well as the learned processing
by an equivariant neural network. The plots illustrate the modelling and symmetries of a two-angle fan-beam
Radon operator on a rotated and translated elliptical ring.

operator A has to be equivariant, i.e., fulfil the visibility-condition in Theorem 3.1. For many
applications (e.g. sparse CT or image inpainting), this can be achieved by a proper modelling
of A and SV such that the definition of A reveals the underlying symmetries that would
appear in the measurement data analytically if one was able to measure the complete signal.
Nevertheless, we expect the resulting networks to provide an efficient architecture also in the
case of sparse measurements.

4.2. Construction of Equivariant Networks. Neural networks are typically built based
on linear layers and the localized application of non-linear activation functions. To construct
equivariant networks, our approach is to concatenate equivariant layers N ℓ : Zℓ−1 → Zℓ and
set

Nθ = N NL ◦ · · · ◦ N 1

where Z0 = Y and ZL = Z. As a consequence of Theorem 3.2, for given input and output
generalized domain transforms, the structure of an equivariant linear layer is known to be
convolutional and the layer can be fully parameterized by the (distributional) kernel a ≡ aθ.

For the implementation of such linear layers we have to approximate the integral in (3.2),
where we solely consider generalized domain transforms for the input and output of the layers.
Such transforms, however, cover the representations in Y or Z that may appear in our desired
indirect measurement applications. As usual for convolutional networks, we use localized
convolution kernels with compact support around the origin. We approximate the integral for
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linear layer N ℓ+1 by

(N ℓ+1x)(w′
j) =

∫
ΩX

(PZℓ+1
[gw] aθ)(w

′
j) pZℓ

[g−1
w ](w0)x(w) |det(DπZℓ

[gw](w0))|−1 dw

≈
Mℓ∑
i=1

(PZℓ+1
[gwi ] aθ)(w

′
j) pZℓ

[g−1
wi

](w0)x(wi) |det(DπZℓ
[gwi ](w0))|−1,

for the parameterized continuous kernel aθ and collocation points Wℓ = {wi}i=1,...,Mℓ
⊂ ΩZℓ

that are sampled uniformly in the support of the integrand. In the first layer, the input is
known only at the measurement locations and therefore we have to chooseW0 = V which may
decrease the quality of the approximation of the integral. Nevertheless, we expect that the
resulting convolutional layer structure forms a good inductive bias also in the first layer while
this scheme enables us to handle arbitrary measurement geometries. The inputs then consist
of pairs (yi, vi)vi∈V , where yi corresponds to the measured value at node vi (e.g., vi = (ri, φi)
in the case of a sinogram).

The constraint (3.3) for the kernel along the orbits of the stabilizer can however be quite
restrictive and limit the expressive power of the layers. For the symmetries that appear in
indirect measurements, the limitations are especially severe, since these orbits can become
unbounded, preventing localized kernels. To overcome this, one has to properly choose the
group representations used throughout the neural network. In most existing discrete [21] and
continuous [13] approaches, this is tackled by choosing Zℓ = D(G,Rcℓ), ℓ = 1, . . . , L− 1, and
the canonical domain transform PG = P(πG), πG : G → G, g 7→ g·, on the group itself as
the input and output representation of inner layers. As a homogeneous space of itself, G has
a trivial stabilizer and the constraint (3.3) vanishes.

In the first layer, N 1 : Y → D(G,Rc1), Theorem 3.2 gives

(N 1y)(g) =

∫
ΩY

aθ(g
−1
v g) pY [g−1

v ](v0) y(v) | det(DπY [gv](v0))|−1 dv,

where the kernel aθ ∈ D′(G) has to fulfil

aθ(n
−1g) = aθ(g) pY [n](v0) | det(DπY [n](v0))|.

This can be realized by setting

aθ(g) = ãθ(πY [g
−1](v0)) pY [g](v0)−1 | det(DπY [g−1](v0))|

for a kernel ãθ ∈ D′(ΩY) so that

(N 1y)(g) =

∫
ΩY

ãθ(πY [g
−1](v)) pY [(g−1)](v0)) y(v) |det(DπY [g](v0))|−1 dv.

As usual for neural networks, we construct non-linear layers using local non-linearities
that act only on the values of activations and are independent of the spatial position. Since,
in most cases, activation functions are applied only in the inner parts of the network (where
all representations PZℓ

are given by the canonical domain transform on G), we do not have
to consider additional constraints on these functions.
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Figure 4. Classification accuracy for fan-beam CT measurements of randomly rotated or affinely trans-
formed MNIST test dataset for different neural networks that are trained exclusively on upright digits.

5. Numerical Experiments. To obtain first insights on the effectiveness of our idea in
practice, we implemented the previously defined layers and performed a series of experiments
in the setting of classification and regression tasks based on (sparse) CT measurements.

5.1. Implementation. We implemented a flexible PyTorch [26] framework that allows us
to compute the generalized convolution in (4.2) for different input and output representations.
Our code is publicly available on GitHub1.

In each layer, we use a small fully-connected neural network with two layers, batch nor-
malization [18] and Swish activations [27] to parameterize a basis of the convolution kernels aθ.
The kernels connecting all input and output channels are then additionally parameterized by
individual linear factors. In this setting, we use the automatic optimization of Einstein sum-
mation in PyTorch to perform the efficient PointConv trick [13]. Where the constraint (3.3)
allows, we enforce locality of the kernels aθ respectively ãθ by an additional rapidly decaying
factor, i.e., aθ(w

′
j) = exp(−d(w′

j , w
′
0)

2/r2) âθ(w
′
j), where d : ΩZℓ

×ΩZℓ
→ R≥0 is a metric that

is invariant with respect to πZℓ
. In addition, we compute the resulting sum only over a set of

k = 27 nearest neighbours to minimize the computational effort.
We use a residual network architecture [16] that is built of three residual blocks connected

by downsampling layers (increasing the field of view and decreasing the amount of sampled
points). In each block, we use three convolutional layers combined with batch normalization
and ReLU activations [14]. We choose 22 channels in the initial layer and double the amount
of channels in each downsampling step, while we halve the amount of sampled points. We
obtain invariance by adding a global average pooling in the last layer, leaving us only with
the constructed channel dimension.

In every iteration of the optimization, we sample a new set of inner collocation points.
However, to reduce the computational effort, we sample only once for each batch and each
residual block and use the same points along all layers with identical scale.

1https://github.com/nheilenkoetter/equivariant-nn-for-indirect-measurements

https://github.com/nheilenkoetter/equivariant-nn-for-indirect-measurements
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Figure 5. Classification accuracy for fan-beam CT projections of the RotMNIST dataset for different
numbers of measurement angles when trained on RotMNIST and tested on RotMNIST or AffineMNIST.

In all of our experiments on image data, we simulate fan beam Radon measurements using
the ASTRA [30, 31] toolbox. For optimization, we use Adam [20] with weight decay and a
learning rate scheduling scheme.

5.2. Digit Classification. As an exemplary task on indirect measurements, we perform
experiments on the classification of sparse Radon measurements of digits from the popular
MNIST [10] dataset and its variants, cf. Figure 2. We study invariance with respect to the roto-
translation group SE(2) and the group of affine transforms with positive determinant R2×GL+

we considered previously for the Radon operator in Example 3.4. For the discretization of the
integrals in the convolutions we always sample 2000 points in the first residual block.

5.2.1. Invariance. To verify our implementation as well as discretization approach, we
perform tests on the actual numerical invariance of the constructed networks. Let us again
stress that we can only expect approximate invariance due to the built-in approximations and
sampling scheme. For this purpose, we train roto-translation equivariant neural networks on
varying geometries of sparse-angle fan beam Radon measurements of the standard MNIST
dataset (containing only upright digits) and evaluate the models on transformed versions of
the test dataset, where we consider arbitrary rotations and transforms from R2 ×GL+. The
transformed signals are computed using nearest-neighbour interpolation on the source images,
before simulating the sparse measurements. We train for 90 epochs with a batch size of 14.

The results for a varying amount of measurements angles are depicted in Figure 4. While
the classification accuracy on the non-rotated test data is similar for all geometries, the con-
structed invariance is better for increasing number of measurement angles. Nevertheless, in all
cases, we notice some extrapolation ability to unseen and transformed data, which underpins
the intuition that the constructed network architecture serves as a good inductive bias even if
exact equivariance cannot be guaranteed. Surprisingly, the roto-translation equivariant net-
works perform similar to the networks that were built to be equivariant with respect to the
larger group R2 × GL+ even in terms of generalization to unseen affinely transformed data.
This could indicate that the latter method requires additional fine-tuning.
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Figure 6. Visualizations of our generated datasets for the digit and ellipse experiments.

5.2.2. RotMNIST. For further investigation we evaluate the classification accuracy of our
approach on noisy indirect measurements of the rotated MNIST benchmark dataset, cf. [22].
We consider the same measurement geometries and network architectures as before and add
6% Gaussian noise to the simulated Radon data. For comparison, we compute classical recon-
structions using the ASTRA toolbox implementation of the SIRT reconstruction scheme. An
example for the obtained reconstructions in the 2-angle case is depicted in Figure 2. On these
reconstructions, we train a discrete group-equivariant (with respect to discrete translation and
rotations in π/2-steps) ResNet18 [16] based on the layer structure that was presented in [7] as
well as the continuous Lie-group-equivariant network implemented in LieConv [13] for their
experiments on RotMNIST. All models are trained for 400 epochs with a batch size of 14.

We evaluate the models on the RotMNIST test data as well as on an randomly affinely
transformed version of it, which we refer to as AffineMNIST. The results are visualized in
Figure 5, while samples from the AffineMNIST dataset are depicated in Figure 6(a). In all
experiments, our approach outperforms the reconstruction-based approaches in terms of gen-
eralization ability. While the discrete reconstruction-based network shows better convergence
on the training data, our methods consistently obtains better results on the test dataset, espe-
cially for sparse geometries where the reconstructions are very inexact and amplify the noise.
These results show that we were able to construct a valuable prior for indirect measurements
and that it can be advantageous to avoid reconstructions in certain cases.

5.3. Thickness Regression of Tubes. In addition to the above classification task, we also
test a regression setting that is motivated by our initial example: the challenge of estimating
the minimal and maximal thickness of a tube based on fan beam data measured from only
two angles, namely 0◦ and 85◦. To simulate this task, we compute a dataset of elliptical rings,
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Table 1
Regression results on the generated ellipse dataset for varying amount of training data, where MSE refers to

the mean squared error for both the minimal and maximal thickness. The methods ’GrouPy’ and ’LieConv’ act
on previously computed classical reconstructions, while our methods directly handles the indirect measurement.

MSE ×10−3 error at dmin ×10−2 error at dmax ×10−2

dataset size ours GrouPy LieConv ours Groupy LieConv ours GrouPy LieConv

1000 0.92 5.59 1.51 1.95 2.80 2.72 2.45 3.60 3.23
2000 0.81 0.92 1.56 1.80 2.01 2.68 2.31 2.40 3.30
4000 0.71 0.85 1.51 1.68 1.97 2.88 2.16 2.35 3.13
8000 0.67 0.51 1.44 1.64 1.50 2.65 2.15 1.82 3.15

constructed from two ellipses with identical center point but randomly different rotation angles
and radii. We add 5% Gaussian noise to the analytically computed sinogram, which is closer
to real-world scenarios avoiding the simulation of forward measurements from given discrete
data. As ground truth, we approximate the minimal and maximal thickness of the tube by
computing the length of the intersection with a line going through the center point of the
ellipses. For comparison, we compute reconstructed images of 129×129 pixels using the SIRT
scheme and compare to group-equivariant models that are trained on these reconstructions.
To evaluate the generalization performance, we evaluate different training dataset sizes, where
all models are trained for 3000 epochs on a batch size of 8. In the initial residual block of
our model, which is constructed to be equivariant to the induced representations of SE(2), we
sample 2700 points for the estimation of the integrals.

Table 1 lists the obtained test errors. We observe that, for dataset sizes below 8000 training
samples, our method outperforms both reconstruction-based approaches on the unseen data.
These results give further indication towards improved generalization properties and show the
data-efficiency of our approach.

6. Conclusion. We have introduced neural networks that incorporate symmetries present
in indirect measurements and theoretically investigated the connection between operators
and symmetries. Our key Theorem 3.2 precisely characterizes symmetries induced by given
operators and, vice versa, determine all operators that share the same symmetries. Based
on these insights we introduced data-efficient neural networks that are tailored to indirect
measurements and can handle sparse inverse problems. In particular, building upon our
definition of generalized domain transforms, we were able to consider a class of symmetries
that has not been treated before and shows new characteristics. The effectivity of our approach
is demonstrated on a classification and a regression task.

We want to stress that our work is meant to serve as a first attempt to the treatment
of equivariance on indirectly measured data. Several open questions and possible extensions
arise both on the theoretical and the numerical side. One direction could be the application
and analysis of our approach in end-to-end reconstructions for sparse measurements. In this
setting, Theorem 3.2 indicates that a large part of the reconstruction operator is already
encoded in the equivariance of our network. Another important aspect is the incorporation of
uncertainties and inexactness in the forward operator or its action on underlying symmetries
in the source space.
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[1] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, Solving inverse problems using data-driven
models, Acta Numerica, 28 (2019), pp. 1––174, https://doi.org/10.1017/S0962492919000059.

[2] E. Celledoni, M. J. Ehrhardt, C. Etmann, B. Owren, C.-B. Schönlieb, and F. Sherry,
Equivariant neural networks for inverse problems, Inverse Problems, 37 (2021), p. 085006, https:
//doi.org/10.1088/1361-6420/ac104f.

[3] D. Chen, M. E. Davies, M. J. Ehrhardt, C.-B. Schönlieb, F. Sherry, and J. Tachella, Imaging
with equivariant deep learning: From unrolled network design to fully unsupervised learning, IEEE
Signal Processing Magazine, 40 (2023), pp. 134–147, https://doi.org/10.1109/MSP.2022.3205430.

[4] D. Chen, J. Tachella, and M. E. Davies, Equivariant imaging: Learning beyond the range space,
in IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 4359–4368, https:
//doi.org/10.1109/ICCV48922.2021.00434.

[5] N. Chenouard and M. Unser, 3D steerable wavelets in practice, IEEE Transactions on Image Process-
ing, 21 (2012), pp. 4522–4533, https://doi.org/10.1109/TIP.2012.2206044.

[6] T. S. Cohen, M. Geiger, and M. Weiler, A general theory of equivariant CNNs on homogeneous
spaces, in Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 2019.

[7] T. S. Cohen and M. Welling, Group equivariant convolutional networks, in Proceedings of the 33th
International Conference on Machine Learning, 2016, pp. 2990–2999.

[8] T. S. Cohen and M. Welling, Steerable CNNs, in International Conference on Learning Representa-
tions, 2017.

[9] M. Dax, S. R. Green, J. Gair, M. Deistler, B. Schölkopf, and J. H. Macke, Group equivariant
neural posterior estimation, in 10th International Conference on Learning Representations (ICLR),
2022, pp. 1–24.

[10] L. Deng, The MNIST database of handwritten digit images for machine learning research, IEEE Signal
Processing Magazine, 29 (2012), pp. 141–142.

[11] S. Dittmer, D. Erzmann, H. Harms, and P. Maass, SELTO: Sample-efficient learned topology opti-
mization, 2022, https://arxiv.org/abs/2209.05098.

[12] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, no. 375 in Mathematics
and Its Applications, Kluwer Academic Publisher, 2000.

[13] M. Finzi, S. Stanton, P. Izmailov, and A. G. Wilson, Generalizing convolutional neural networks
for equivariance to Lie groups on arbitrary continuous data, in Proceedings of the 37th International
Conference on Machine Learning, 2020, pp. 3165–3176.

[14] K. Fukushima, Cognitron: A self-organizing multilayered neural network, Biological Cybernetics, 20
(1975), pp. 121–136, https://doi.org/10.1007/BF00342633.

[15] I. M. Gel’fand and G. E. Shilov, Generalized Functions. Volume I: Properties and Operations, Aca-
demic Press, 1964.

[16] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 770–778.
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