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ABSTRACT

In the recent years, practitioners in the area of tomography have
proposed high dynamic range (HDR) solutions that are inspired by
the multi-exposure fusion strategy in computational photography. To
this end, multiple Radon Transform projections are acquired at dif-
ferent exposures that are algorithmically fused to facilitate HDR re-
construction. A single-shot alternative to multi-exposure fusion ap-
proach has been proposed in our recent line of work which is based
on the Modulo Radon Transform (MRT). In this case, Radon Trans-
form projections are folded via modulo non-linearity. This folding
allows HDR values to be mapped into the dynamic range of the
sensor and, thus, avoids saturation or clipping. The folded measure-
ments are then mapped back to their ambient range using algorithms.
The main goal of this paper is to introduce a novel, Fourier domain
recovery method, namely, the OMP-FBP method, which is based
on the Orthogonal Matching Pursuit (OMP) algorithm and Filtered
Back Projection (FBP) formula. The proposed OMP-FBP method
offers several advantages; it is agnostic to the modulo threshold or
the number of folds, can handle much lower sampling rates than
previous approaches and is empirically stable to noise and outliers.
Computer simulations as well as hardware experiments in the paper
validate the effectivity of the OMP-FBP recovery method.

Index Terms— Computational imaging, computer tomography,
high dynamic range, Radon transform and sampling theory.

1. INTRODUCTION

The Modulo Radon Transform (MRT) [1,2] was recently introduced
to enable a single-shot, high dynamic range (HDR) reconstruction
approach in the context of Radon Transform measurements. When
conventional Radon projections exceed the dynamic range of the
detector, the resulting measurements are saturated or clipped, lead-
ing to a permanent loss of information. To overcome this bottle-
neck, in the recent years, independent groups of researchers have ex-
plored the idea of HDR tomography [3—6] which is largely inspired
by the multi-exposure fusion approach in computational photogra-
phy [7, 8]. By fusing X-ray exposures, for example, at different tube
voltages [3], HDR reconstruction has been experimentally verified.
Instead of fusing multiple exposures, we have been exploring
an alternative approach based on the MRT [1, 2, 9] that allows for
single-shot HDR reconstruction. The MRT is based on a joint de-
sign of hardware and algorithms. HDR projections are folded into
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Fig. 1: Conventional Radon Transform and the corresponding Modulo Radon
Transform (MRT) [1, 2] registering low dynamic range (LDR), folded pro-
jections. Algorithmic unfolding of these projections results in high dynamic
range (HDR) recovery. Hardware experiments are shown in Fig. 6 and Fig. 7.
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low dynamic range (LDR) measurements. This is inspired by the
Unlimited Sensing Framework [10-14], where recovery of signals
as large as 24 x the dynamic range of the analog-to-digital converter
(ADC) has been experimentally validated (cf. [13]). Once the folded
measurements are obtained (cf. Fig. 6 and Fig. 7), HDR recovery is
performed using algorithmic unfolding.

In a nutshell, the MRT is schematically explained in Fig. 1. Here,
the conventional Radon Transform measurements are in the dynamic
range [0, 0.55]. On the other hand, the MRT with modulo thresh-
old A = 0.025 registers much smaller but folded, LDR, modulo
measurements. From these folded MRT measurements, HDR recon-
struction is performed using the approaches in [2].

Motivation. This paper is motivated by the practical aspects of the
MRT and associated experiments. In our previous work [1,2,9], our
focus was on the inversion of the MRT as well as mathematical guar-
antees that back the recovery algorithms. Our recovery algorithms
in [1,2, 9] were based on higher order forward differences, which
limits their practical utility in noisy scenarios and can be demanding
in terms of the sampling density. This motivates the development of
algorithms that (i) can work with far fewer sample sizes when com-
pared to US-FBP method in [2], (ii) can handle noise and outliers,
(iii) are agnostic to the modulo threshold A to avoid ADC calibration
and (iv) does not require the knowledge of the number of modulo
folds, as is the case with the recent Fourier—Prony approach [13].

Contribution. In this paper, our main goal is to develop an algorithm
that can handle the above-mentioned aspects (i)—(iv) simultaneously.
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To this end, we present the OMP-FBP method which is based on the
well-known Orthogonal Matching Pursuit (OMP) [15] algorithm. By
interpreting the MRT measurements in the Fourier domain, we show
that it is possible to metamorphose MRT recovery into a sparse esti-
mation problem and this is where OMP plays a key role. In particu-
lar, realizing that modulo folds lie on a time grid allows us to build a
dictionary that avoids the knowledge of modulo threshold A. This is
in contrast to unlimited sampling where A is crucial to recovery. Fur-
thermore, by re-interpreting Fourier domain extrapolation [13, 14]
as a sparse regression problem, the OMP-FBP method avoids the
knowledge of number of modulo folds. Extensive numerical experi-
ments together with hardware validation corroborate that OMP-FBP
can indeed handle far fewer samples than US-FBP [1,2,9], is robust
to noise and agnostic to both modulo threshold and number of folds.

2. FORWARD MODEL AND OMP BASED RECOVERY

Forward Model. For a bivariate function f = f(x) with spatial
coordinates x = (21, z2) € R? and threshold A > 0, we define the
Modulo Radon Transform (MRT) [1,2] Z*f : S' x R —» [, A
of f as

L@)\f(ea t) = M(Rf(0,1)),

where . denotes the centered 2A-modulo operation

t4 A

///A(t):t—Z)\{ =

J fort e R

and Rf : S' x R — Ris the classical Radon Transform given by

Rf(6,t) = / f(x) dx.

(x,0)=t
As @ € S' can be written as @ = (cos(6), sin(#)) with 8 € [0, 27),
we use the notations Rof = Rf(0,-) and Zof = Z*f(9,-).
We have proven in [2] that any band-limited function f € L*(R?)
with bandwidth 2 > 0 is uniquely determined by its semi-discrete
MRT samples {Z, f(kT) | 6 € [0,7), k € Z} if the sampling rate
T > 0 satisfies the oversampling condition T' < &. To deal with not
band-limited functions, we use the following sampling architecture:
(i) Pre-filter Rof with ®q satisfying Fdq(w) = Li_g o)(w)
yielding the band-limited Radon projection pg = Rg f * Pq.
(ii) Fold py into [—A, \] giving the MRT projection py = .#x(pe).
(iii) Sample py with rate T yielding y3 [k] = pj (kT) for k € Z.
Moreover, in practice only finitely many samples can be taken and,
here, we now consider the problem of recovering f € L*(R?) with
support in B1(0) C R?, i.e., f(x) = 0 for ||x||2 > 1, from finitely
many MRT projections

(v, (te) | -K<k<K,0<m<M-1}

in parallel beam geometry with ¢, = kT and 6., = m ;.

Recovery Strategy. As in [1,2,9] we follow a sequential reconstruc-
tion approach explained by the flow diagram

OMP-FBP Method

P3,, — — po,. — | FBP|— fo.

Step 1 Step 2

» First Step. Our goal here is to recover pg from pj for each angle
0 € {0} To this end, we use Fourier series approximation,
po(t) = 3 |1 <ng Pn e withwo = 2%, where 7 = (2K + 1)T

Algorithm 1 OMP-FBP Method

Input: MRT samples p; [k] = pp ((k — K)T) for k € [0,2K] and
6 € {6, 1M}, bandwidth Q > 0, OMP threshold & > 0

1: for 6 € {0,,}M -5 do

2 Set 122 [n] = App[n] and compute ]Eg [n],n € [0,2K —1].
3 Estimate {c;, t; }{‘:*0_1 by solving (1) with OMP (2).

4 Compute 5)[n] = 312 " crexp (—i128%).

5: Setp,[n] = @\2 [n] + 3, [n] and compute p,[nl.

6 Estimate pg[k], k € [0, 2K], by anti-difference.

7: end for

Output: OMP-FBP reconstruction fo = %Rﬁ (Fa *p po)

and Ng = [Q/wo] is the effective bandwidth. Our hardware ex-
periments in Section 3 show that this assumption is reasonable in
practice. For simplicity, let us write pg[k] = po((k — K)T) and
polk] = p3 (k — K)T) for k € [0,2K]. The modulo decomposi-
tion property [11] allows us to relate the folded samples in terms of
the original samples via pg [k] = pp [k] + s [k], where s [k] € 2)\Z
is the residue function. Let A denote the first-difference operator and
setp, = Apg. We have p ) = Bz + §§‘ revealing the sparse signal

s)[k] = Zf:o‘l ad(kT —t), t € (TZ)N[0,7)

where L) is the sparsity level depending on the number of folds
induced by . and {c;, }ZL 2 ! are the unknown parameters of the
resulting sparse object. In our recent work [13], we have shown that
§§‘ [k] can be isolated in the Fourier domain. To see this in action,
let us begin by denoting the Discrete Fourier Transform (DFT) of
p, K] by B, 0] = 3250 [k #0", where w, = 7. Due to
the band-limited approximation of py by N harmonics we have

Pl = p,In] —5[n] 1 € Eng 2k
=0 —5,[n] n ¢ Eng 2K

where Eng,.p = [0, No] U [P — Nq, P — 1]. Hence, 3, [n] is ac-
cessible at the Fourier frequencies n € [0,2K — 1] \ Eng 2k-
Due to the explicit relation, 5 [n] = Zle*o_l crexp (—i%9"t;) with
t; € (TZ) N[0, ), we can determine the 2Ly unknowns by solving

minimize ||c|lo suchthat Ve =s, (1)

where V is a Vandermonde dictionary with L. = 2K + 1 columns
and entries [V],,; = exp(—iwynl),l = 0,...,L —1,c € Clis
the unknown sparse vector with L non-zero entries, and s is the
vector of measurements [s],, = —p [1n], n ¢ Eng,2x. To this end,
we apply the following variant of OMP [15]:

I

Ji+1 = arg max’ [V*(s —Vc')]

J

0<j<L-1
ST =S"U {jis}, 2
¢ = arg min{||s — Vcll2, supp(c) C Siﬂ}
cecl

with S° = ), c® = 0 and stopping criterion || V*(s — V') || < €.
In terms of the recovery procedure, the solution to (1) provides
estimates for {c;, tl}lLZAO_l. Given these estimates and E’g\ [n], we can
obtain p [n] = @2 [n] + 35, [n]. There on, inverting the DFT results in
p,[k] and, finally, its anti-difference allows for estimation of py[k].
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Fig. 2: Demonstration of OMP-FBP reconstruction for the Shepp-Logan phantom. (a) Radon data. (b) Noisy Modulo Radon data with A = 0.025 and
v = 0.025 - A. (c) PU-FBP on noisy Modulo Radon data in (b). (f) OMP-FBP on noisy Modulo Radon data in (b).
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Fig. 3: OMP-FBP reconstruction from Modulo Radon data of the Shepp-
Logan phantom with Gaussian and uniform noise. (a) Noisy Modulo Radon
data with A = 0.175, 0 = 0.025 - pg and v = 0.1 - . (b) OMP-FBP on (a).

Let us stress that this approach neither uses the modulo thresh-
old A nor the number of folds V). In particular, the application of
OMP makes our recovery scheme agnostic to both A and N. The
latter is particularly advantageous as it makes our approach data-
driven in contrast to [13] which assumes the knowledge of V).

» Second Step. Next, we reconstruct f from the recovered Radon
projections {pg,, (tx) | — K < k < K, 0 < m < M — 1} by
applying the approximate filtered back projection (FBP) formula

fo = 3R* (Fa x o), 3)

where FY, is a reconstruction filter satisfying 7 Fo(S) = |S| W (2)
with an even window W € L°°(R) supported in [—1, 1] and where
R* denotes the back projection operator

1

# _ T

R7g(x) = o /Sl g(0,x 0)de.

As &g and I, have the same bandwidth, (3) can be rewritten as

fo = %R#(FQ * Rof)

and we refer to [16—18] for a discussion of reconstruction error. Our
recovery scheme is summarized in Algorithm 1, where formula (3)
is discretized using a standard approach, frep = %’Rﬁ(Fg *D Do)
According to [19], the optimal sampling conditions for fixed band-
width Q > Oare givenby T < T, K > % and M > Q.

3. NUMERICAL AND HARDWARE EXPERIMENTS

‘We now present numerical and hardware experiments to demonstrate
the effectivity of our approach for both simulated and real data.
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Fig. 4: OMP-FBP reconstruction from noise Modulo Radon data of the
Shepp-Logan phantom with sparse outliers. (a) Noisy Modulo Radon data
with A = 0.025 and shot noise in [—0.2, 0.2]. (b) OMP-FBP on data in (a).

We use the Shepp-Logan phantom [20] and the open source wal-
nut dataset [21] that includes realistic uncertainties arising from the
tomography hardware. For comparison, we also apply US-FBP [2]
based on Unlimited Sampling Algorithm (USAlg) [11] and PU-FBP
based on Phase Unwrapping (PU) in the first Step of our approach.

Numerical Experiments. In a first set of numerical experiments we
use the OMP-FBP framework to recover the Shepp-Logan phantom
on a grid of 256 x 256 pixels from noisy Modulo Radon Projections
{ps, (KT) | —K <k < K, 0 <m < M — 1}, where we always
use the optimal parameter choices T = /k, 2 = M and the cosine
reconstruction filter given by F Fq(w) = |w| cos(Zg) Lj—a,q)(w).
The results for A = 0.025 are summarized in Fig. 2, where we use
the parameters X = 698, M = 180 and uniform noise with noise
level v = 0.025 - A on the modulo samples, i.e., |3 — P2 ||co < Vs
leading to an SNR of 31.3 dB. This choice violates the recovery
conditions for USAlg, namely, Tys < ﬁ, and hence, US-FBP
recovery fails. Also PU is not applicable and PU-FBP fails as well.
In contrast to this, OMP-FBP successfully recovers with structural
similarity index measure [22] SSIM = 0.9253 at the same quality as
FBP reconstruction from clear Radon data, where SSIM = 0.9285.

In Fig. 3 we use the parameters K = 574, M = 180 and con-
sider a combination of Gaussian noise before and uniform noise after
modulo with threshold A = 0.175. We added white Gaussian noise
with variance o2 to the Radon projections pg, where o = 0.025 - B,
depends on the arithmetic mean p, of pg. Moreover, we added uni-
form noise with noise level » = 0.1 - A to the modulo projections,
yielding the noisy projections py with an SNR of 14.1 dB. We ob-
serve that OMP-FBP is able to reconstruct the phantom from this
noisy data with SSIM = 0.8296, which is comparable to the FBP
reconstruction from the noisy Radon data, where SSIM = 0.9069.
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Fig. 5: Demonstration of OMP-FBP reconstruction for the walnut dataset. (a) Normalized Radon data. (b) FBP on Radon data in (a) serving as ground truth.
(c) Noisy Modulo Radon data with A = 0.05 and v = 0.05 - \. (d) OMP-FBP on noisy Modulo Radon data in (c).
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Fig. 6: Hardware validation of our OMP-FBP approach on the walnut dataset
with our prototype modulo sampling hardware and subsampling factor 2.33.

To simulate the observation that real hardware modulo samples
can be contaminated with sparse outliers, we consider the case of
shot noise in Fig. 4. For each angle 6 we added random values in
the range [—0.2,0.2] at up to 20 positions to the Modulo Radon
Projections pp with threshold A = 0.025 and parameters K = 821,
M =180, i.e., |y — p3]lec < 0.2 and ||y — p3lo < 20, leading
to an SNR of 4.7 dB. While US-FBP and PU-FBP fail, OMP-FBP
successfully recovers with SSIM = 0.9280 at the same quality as the
FBP reconstruction from clear Radon data, where SSIM = 0.9285.

In a second set of experiments, we consider the walnut dataset
from [21], which is transformed to parallel beam geometry with
M = 600 and K = 1128 corresponding to T = 1/1128. Moreover,
the Radon data is normalized to the dynamical range [0, 1] so that
IR f|loo = 1.Its simulated Modulo Radon Projections are displayed
in Fig. 5(c) for A = 0.025, where we added uniform noise with noise
level v = 0.05 - X to the modulo samples to account for quantiza-
tion errors, i.e., || — 3|l < v, leading to an SNR of 25.3 dB.
The reconstruction with our proposed OMP-FBP method is shown
in Fig. 5(d), where we again use 2 = M = 600 and the cosine
reconstruction filter. We observe that our algorithm yields a recon-
struction of the walnut that is again visually indistinguishable from
the FBP reconstruction from conventional Radon data, cf. Fig. 5(b),
while compressing the dynamic range by about 10 times.

Hardware Experiments. We validate the effectivity of our OMP
based approach on real data which is prone to system noise [11]
and outliers [14]. To do so, we consider MRT samples acquired by
our custom designed modulo ADC [13]. In particular, Radon Trans-
form measurements based on the walnut dataset [21] are re-digitized
using our modulo ADC. For further details on the acquisition pro-
tocol, we refer to Section 4.2 in [2]. We consider MRT samples
along two different angles 6. As mentioned in our work, the use
of OMP based approach allows for recovery at reduced sampling
rates. MRT data acquired using T = 75 pusec. (sampling period)
and N = 665 samples with 4, ~ 1000 Hz allows for recovery
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Fig. 7: Hardware validation of our OMP-FBP approach on the walnut dataset
with our prototype modulo sampling hardware and subsampling factor 3.33.

with A = 2.01 when using the US-FBP method [2]. Here, in Fig. 6,
we consider N = 285 samples at Tomp = 175usec., which is a
factor 2.33x reduction. This violates the recovery condition for the
USAlg [11], namely, Tys < 1/20e and hence, USAlg based recovery
fails. That said, the OMP based approach recovers the HDR signal
with MSE = 9.79 x 10~2 and is agnostic to both X and N.

In Fig. 7, we consider a more aggressive reduction in sampling
density, that is N = 200 MRT samples with Tomp = 250usec.
which amounts to a factor 3.33 x reduction in comparison to [2]. Not
surprisingly, the US-FBP method is unable to recover while OMP
based approach offers a graceful recovery with MSE = 3.88x 107",

4. CONCLUSION

The Modulo Radon Transform (MRT) has been recently introduced
to offer an alternative approach towards high dynamic range (HDR)
tomography. Instead of combining multiple Radon Transform pro-
jections at different exposures, as is the case with conventional HDR
photography, the MRT achieves this goal in a single shot approach.
In the case of MRT, arbitrarily large Radon projections are folded
into the dynamic range of the analog-to-digital converter and there
on, HDR recovery boils down to the inverse problem of “unfolding”
the folded projections. To this end, this paper introduces a Fourier
domain recovery termed as the OMP-FBP approach. This method
leverages sparsity and is based on the orthogonal matching pursuit
(OMP) algorithm. Both computer and hardware experiments, based
on our custom designed modulo-ADC, show the benefits of our ap-
proach. In particular, the OMP-FBP method offers recovery at lower
sampling rates and is robust to noise and outliers. At the same time,
the OMP-FBP approach is agnostic to the modulo threshold and the
number of modulo folds. Our current work is grounded in experi-
ments with emphasis on hardware measurements to develop a sense
of realistic performance. Future work includes developing concrete
recovery guarantees and noise performance analysis.
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