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Abstract—Inspired by the multiple-exposure fusion approach
in computational photography, recently, several practitioners
have explored the idea of high dynamic range (HDR) X-ray
imaging and tomography. While establishing promising results,
these approaches inherit the limitations of multiple-exposure
fusion strategy. To overcome these disadvantages, the modulo
Radon transform (MRT) has been proposed. The MRT is based
on a co-design of hardware and algorithms. In the hardware
step, Radon transform projections are folded using modulo non-
linearities. Thereon, recovery is performed by algorithmically
inverting the folding, thus enabling a single-shot, HDR approach
to tomography. The first steps in this topic established rigorous
mathematical treatment to the problem of reconstruction from
folded projections. This paper takes a step forward by proposing
a new, Fourier domain recovery algorithm that is backed by
mathematical guarantees. The advantages include recovery at
lower sampling rates while being agnostic to modulo threshold,
lower computational complexity and empirical robustness to
system noise. Beyond numerical simulations, we use prototype
modulo ADC based hardware experiments to validate our claims.
In particular, we report image recovery based on hardware
measurements up to 10 times larger than the sensor’s dynamic
range while benefiting with lower quantization noise (∼12 dB).

Index Terms—X-ray computerized tomography, high dynamic
range, Radon transform, modulo non-linearity, sampling theory.

I. INTRODUCTION

In the recent years, practitioners in the area of tomography
have started to develop methods for high dynamic range
(HDR) imaging. HDR tomography allows for recovery of
tomograms beyond the restrictions imposed by the detector’s
fixed albeit limited dynamic range. The first approaches were
inspired by computational photography for HDR imaging
[2], [3]. Such approaches rely on multi-exposure fusion. In
the tomography context, this translates to acquiring multiple
low dynamic range (LDR) measurements at a different en-
ergy/exposure level, thus accounting for multi-exposures [3].
Subsequently, the LDR images are algorithmically “fused” into
a single, HDR image. In summary, given a detector of fixed
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Fig. 1. Overview of the computational imaging pipeline for HDR tomography
via the modulo Radon transform (MRT) [4]–[6].

dynamic range, this strategy enables recovery of tomographic
images with a dynamic range that is much larger than the
detector’s maximum range.

Emerging Literature on HDR Tomography. First attempts
by Trpovski et al. [7] on HDR recovery were based on X-ray
image pair fusion. Follow-up works by Chen et al. [8] and
by Haidekker et al. [9] were based on a multiple exposure
approach for X-ray imaging. For an illustrative example of
HDR X-ray, we refer the readers to Fig. 6 in [9]. A pixel-level
design for an HDR X-ray imaging setup was considered by
Weiss et al. [10]. Akin to computational photography, multi-
exposure X-ray imaging requires acquisition with different
gains. This is achieved by careful calibration at each exposure.
The work of Li et al. [11] presents an automated approach
to this problem. Going beyond the case of single projection
angle, exposure adaption can be performed across the scanning
angles. This approach was investigated by Chen et al. in [12].

HDR Tomography via Modulo Radon Transform. On
the one hand, the approaches in [8]–[12] take a new step
forward in terms of HDR X-ray imaging. On the other hand,
since the basic technique is pivoted on HDR photography
[2], in the tomography context, the challenges posed by the
limitations intrinsic to multi-exposure fusion still need to
be resolved. These limitations include, (i) ghosting artifacts,
(ii) exposure calibration problem, (iii) efficient tone mapping
methods, and, (iv) unknown sensor response. Detailed aspects
of these limitations are discussed in [6]. Further to these
limitations attributed to multi-exposure fusion, we note that
prior work on HDR X-ray imaging [8]–[12] is focused on
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empirical experiments. This necessitates the development of
principled approaches for HDR X-ray imaging that are backed
by mathematical guarantees and lead to efficient reconstruction
algorithms amenable to practical scenarios.

Towards this end, in the recent line of works, the modulo
Radon transform (MRT) [4]–[6] was introduced to facilitate
a single-shot, HDR tomography solution. MRT based HDR
imaging jointly harnesses a collaboration between hardware
and algorithms. A breakdown of the pipeline is as follows:
• Hardware. In the hardware pipeline, instead of digitizing

the conventional Radon transform (RT), in the MRT case,
one “folds” the RT in analog or continuous-time domain via
modulo non-linearities. This maps the HDR, RT projection
into LDR, folded signal which is subsequently sampled
or digitized using analog-to-digital converters. The folding
structure is inspired by the Unlimited Sensing Framework
(USF) [13]–[15]. Injecting modulo non-linearity in the
continuous-time domain has two distinct advantages.
a) Conventionally, due to their arbitrary dynamic range,

the RT projections may saturate the detector [8]. This
results in permanent loss of information via saturated or
clipped measurements. In our case, the folding approach
ensures that the MRT measurements are bounded by the
modulo threshold [6], [15].

b) Given a fixed bit budget or digital resolution, lower
dynamic range results in higher quantization resolution.
Since MRT measurements are bounded by a much
smaller range than the RT projections, the resulting mea-
surements leverage the advantage of lower quantization
noise floor.

• Algorithms. The inversion of MRT leads to a new class
of non-linear inverse problems. Recovery algorithms that
“unfold” LDR projections into HDR measurements consti-
tute the reconstruction pipeline for MRT recovery. For first
results on this topic, we refer to [6].

Existing Art. In our recent works [4]–[6], we have considered
the inversion of the MRT using a sequential approach. Starting
with folded RT projections, these approaches work by first
“unfolding” the MRT projections per scan angle and then
using existing methods for inverting the RT, e.g. filtered back
projection. Rigorous treatment of the topic together with a
proof-of-concept hardware validation was demonstrated in [6].
These ideas provide an end-to-end implementation of the MRT
approach, clearly showing its potential value in terms of HDR
tomography. Simultaneously, since computational sensing and
imaging methods rely on a melding of hardware and algo-
rithms, this work also raises several interesting questions on
the theoretical and practical frontiers.
Motivation and Contributions. The end-to-end implementa-
tion of the MRT, tying both the theory and practice aspects in
a holistic fashion, motivate the following observations. In the
context of our previous recovery approach [4]–[6],
• reconstruction is based on the inversion of higher-order

differences. This leads to numerical instabilities specially
in the presence of noise, thus limiting the true potential of
HDR recovery. This calls for development of efficient and
stable recovery methods.

• a factor of πe oversampling is required. How can we
achieve tighter sampling rates? This will ease the burden
on reconstruction algorithms.

• modulo ADC calibration is a must as the knowledge of ADC
threshold λ is required for the algorithm to work. Hence,
an algorithm that is agnostic or blind to this parameter is
highly desirable.
Continuing along the directions of our recent presentation

[1], in this paper, we address the above points by developing
a Fourier domain recovery method. Note that the existing
methods [4]–[6] are solely based on spatial domain processing.
In that regard, our Fourier domain algorithm broadens the
algorithmic scope when it comes to using the full range of
recovery methods linked with tomography. A major challenge
in deriving Fourier domain perspective in our setting is that
working with non-linearities is particularly difficult in the
transform domain. To this end, our work takes a step forward
in developing new insights for inversion. In summary, our main
contributions are as follows:
C1) Our algorithm is backed by mathematical guarantees

presented in Section III-B. In particular, our recovery
algorithm works with any sampling rate above Nyquist
rate (see Corollary 1). This is factor πe improvement over
previous result.

C2) We present a novel, non-sequential algorithm for in-
version of the MRT that directly works in the Fourier
domain. The advantages are twofold.
a) It leads to an efficient algorithmic implementation.

Firstly, the runtime algorithmic complexity analysis
is presented in Section III-E and shows a reduction of
computational costs by one order of magnitude (up
to logarithmic factor). Secondly, working directly in
the Fourier domain enables backwards compatibility
with existing tools for Fourier RT reconstruction e.g.
the methods surveyed in Section III-C.

b) Our algorithm is agnostic to the folding threshold λ
which circumvents the problem of ADC calibration.

C3) Experimental validation using modulo ADC hardware
[15] shows the distinct advantages of our underpinning
theory. In particular, (a) recovery at much lower sampling
rates, (b) HDR recovery with higher digital resolution or
lower quantization noise, and, (c) empirical robustness in
the presence of system noise and outliers.

Paper Overview. This paper is organized as follows. We begin
our discussion by revisiting the modulo Radon transform and
the associated forward model in Section II. Our main results
are covered in Section III. In Section III-A we present a
sequential reconstruction approach; the associated theoretical
guarantees are derived in Section III-B. A direct reconstruction
approach is presented in Section III-C which makes our
approach compatible with a variety of exiting methods for
the conventional Radon transform briefly reviewed in Sec-
tion III-D. Computational complexity analysis is presented
in Section III-E. Section IV is dedicated to numerical and
hardware experiments which validate the methods developed
in Section III. Finally, we summarize our results in Section V
while providing some pointers to future research.
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II. REVISTING MODULO RADON TRANSFORM

Forward Model. The recently introduced modulo Radon
transform (MRT) allows for a range reduction of classical
Radon measurements. For a bivariate function f ∈ L1(R2),
the Radon transform Rf is defined as

Rf(t,θ) =

∫
x·θ=t

f(x) dx for (t,θ) ∈ R× S1.

Its composition with the modulo operator Mλ yields the
modulo Radon transform Rλf with

Rλf(t,θ) = Mλ(Rf(t,θ)) for (t,θ) ∈ R× S1

for a fixed modulo threshold λ > 0, first introduced in [4]–[6].
Here, the 2λ-centered modulo operation is given by

Mλ(t) = t− 2λ

⌊
t+ λ

2λ

⌋
for t ∈ R,

where ⌊·⌋ denotes the floor function for real numbers. For the
sake of brevity, in the following, we write Rθf = Rf(·,θ)
and Rλ

θf = Rλf(·,θ), respectively. Moreover, θ ∈ S1 can be
written as θ = θ(φ) = (cos(φ), sin(φ))⊤ with φ ∈ [0, 2π)
and due to the symmetry property

Rλf(t,θ(φ+ π)) = Rλf(−t,θ(φ))

it suffices to consider t ∈ R and φ ∈ [0, π). The corresponding
inverse problem can be formulated as recovering f from g,
where the function g fulfils the non-linear operator equation

Rλf = g (1)

and, typically, only finitely many noisy samples of g are given.

Pre-filtering and Sampling Architecture. In [6] it has been
shown that the modulo Radon transform is injective on the
Bernstein space of bandlimited integrable functions and that
any function f ∈ L1(R2) of bandwidth Ω > 0 is uniquely
determined by the semi-discrete samples {Rλf(kT,θ) | k ∈
Z, θ ∈ S1} with radial sampling rate T < π

Ω . To deal with
compactly supported target functions with supp(f) ⊆ B1(0),
we follow the approach in [6] and perform a pre-filtering step
with the ideal low-pass filter to the Radon transform to enforce
bandlimitedness. Subsequently, we fold the filtered Radon data
into the symmetric interval [−λ, λ], leading to the following
sampling architecture:

S1) Compute the Radon projections pθ = Rθf ∗ ΦΩ by
applying the ideal low-pass filter with FΦΩ = 1[−Ω,Ω].

S2) Compute the modulo Radon projections pλθ = Mλ(pθ)
with modulo threshold λ > 0.

Note that, due to the Fourier slice theorem, the pre-filtering
step S1) also leads to a bandlimited version fΩ of f via

F2fΩ(σθ) = F1(pθ)(σ) ∀(σ,θ) ∈ R× S1,

where Fd denotes the d-dimensional Fourier transform,

Fdh(ω) =

∫
Rd

h(x) e−iω·x dx for ω ∈ Rd.

For applications, the data needs to be fully discretized.
Therefore, we sample pλθ with respect to both the radial and

the angular variable to obtain the dataset in parallel beam
geometry,{

pλθm
(tk)

∣∣∣ k = −K, . . . ,K ′, m = 0, . . . ,M − 1
}
, (2)

with radial sampling rate T < π
Ω and angular sampling rate

∆φ = π
M , i.e., tk = kT and θm = θ(φm) with φm = m∆φ.

III. FOURIER BASED MODULO RADON INVERSION

A. Sequential Reconstruction Approach

We start with explaining a sequential recovery approach
that is based on a Fourier domain interpretation of the MRT
reconstruction problem and allows for a reformulation of
the reconstruction problem as a frequency fitting task. More
precisely, by applying a classical sparse approximation tool,
namely the orthogonal matching pursuit algorithm, in Fourier
domain, the Radon projections are recovered from the modulo
Radon projections and, in spatial domain, the target function is
reconstructed by applying the classical filtered back projection
formula. We remark that this approach has been introduced
in [1], but still asks for a mathematical theory that guarantees
recovery. In the following, we will take first steps in this
direction.

First Step: Since pθ is bandlimited with bandwidth Ω > 0
due to the above pre-filtering step, its Fourier series can be
approximated by

pθ(t) ≈
∑

|n|≤NΩ

cn(pθ) exp(iω0nt),

where cn(pθ) denotes the n-th Fourier coefficient of pθ and
the effective bandwidth NΩ = ⌈Ω/ω0⌉ with ω0 = 2π

(K+K′+1)T
defines the number of frequency samples contained in the
supported frequency range [−Ω,Ω]. In the following, we
require that K ′ ≥ K ≥ NΩ + 1. For simplicity, we set
N = K +K ′ and write pθ[k] = pθ(tk−K) for k = 0, . . . , N .
The Mλ operation decomposes the Radon projection pθ into
the modulo Radon projection pλθ and the step function sλθ by

pθ[k] = pλθ [k] + sλθ [k] for k = 0, . . . , N, (3)

where we have sλθ [k] =
∑

ℓ αℓ1Iℓ(kT) with pairwise disjoint
proper intervals Iℓ ⊆ [0, NT] and coefficients αℓ ∈ 2λZ.
Due to the linearity of the forward difference operator
∆ : RN+1 → RN , defined by ∆z[k] = z[k + 1]− z[k], the
modulo decomposition in (3) also applies to p

θ
= ∆pθ and

to its discrete Fourier transform pp
θ

given by

pp
θ
[n] =

N−1∑
k=0

p
θ
[k] exp

(
−2πink

N

)
for n = 0, . . . , N − 1.

The bandlimitedness of pθ then implies

ppλ
θ
[n] =

{
pp
θ
[n]− psλθ [n] for n ∈ ENΩ,N

−psλθ [n] for n /∈ ENΩ,N

(4)

with indices ENΩ,N = {0, . . . , NΩ} ∪ {N −NΩ, . . . , N − 1}.
In particular, the signal psλθ can be written as

psλθ [n] =
∑
ℓ∈Lλ

cℓ exp
(
−i

ω0n

T
tℓ

)
for n = 0, . . . , N − 1
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with ω0 = 2π
N , Lλ ⊆ {0, . . . , N} and tℓ ∈ (TZ) ∩ [0, NT].

In order to obtain a discretized solution to problem (1),
firstly, we aim at reconstructing pp

θ
and, thus, psλθ for all

θ ∈ S1, which corresponds to the recovery of the set of
parameters {cℓ, tℓ}ℓ∈Lλ

. According to (4), we have access to
psλθ [n] = −ppλ

θ
[n] for n ∈ {0, . . . , N − 1} \ ENΩ,N = Ec

NΩ,N .
This can be used to formulate the sparse minimization problem

min
c∈CN+1

∥c∥0 such that Vc = s, (5)

where the measurement vector s ∈ CN−2NΩ−1 is given by

sn−NΩ
= psλθ [n] for n ∈ Ec

NΩ,N (6)

and

Vn−NΩ,ℓ+1 = e−iω0nℓ for n ∈ Ec
NΩ,N , ℓ = 0, . . . , N (7)

defines a Vandermonde matrix V ∈ C(N−2NΩ−1)×(N+1).
The solution vector c ∈ CN+1 of (5) encodes the sought
parameters {cℓ}ℓ∈Lλ

as its non-zero vector components and
the set {tℓ}ℓ∈Lλ

is determined by the corresponding indices.
We solve the sparse optimization problem by applying the

orthogonal matching pursuit (OMP) algorithm, which was first
proposed in [16]. Here, we use a variant as described in
Algorithm 1. Given the estimates {cℓ, tℓ}ℓ∈Lλ

, we can form
pp
θ
= ppλ

θ
+ psλθ via

psλθ [n] =
∑
ℓ∈Lλ

cℓ exp
(
−i

ω0n

T
tℓ

)
and compute p

θ
= ∆pθ by its inverse discrete Fourier

transform. To recover the the unfolded Radon projections pθ,
we make use of the following notion of compact λ-exceedance,
first introduced in [6].

Definition 1 (Compact λ-exceedance). For λ > 0, a function
g : R → R is called of compact λ-exceedance with parame-
ter ρ > 0 if

|g(t)|< λ for |t| > ρ,

in which case we write g ∈ Bλ
ρ .

Assuming pθ ∈ Bλ
ρ for all θ ∈ S1 and K ≥ ρT−1, we can

recover pθ by applying the anti-difference operator S : RN →
RN+1, defined by Sz[k] =

∑
j<k z[j], as we then have

pθ = S(∆pθ) + pθ[0] = S(∆pθ) + pλθ [0].

Second Step: Having recovered the Radon projections pθ
from modulo Radon projections pλθ , we now reconstruct the
target function f by applying the approximate filtered back
projection (FBP) formula

fFBP =
1

2
R#(FΩ ∗ pθ), (8)

where FΩ is a bandlimited reconstruction filter satisfying
FFΩ(S) = |S|W (SΩ ) with an even window W ∈ L∞(R)
supported in [−1, 1] and where R# denotes the adjoint op-
erator of the Radon transform given by the back projection
operator

R#g(x) =
1

2π

∫
S1
g(x · θ,θ) dθ for x ∈ R2.

Algorithm 1 OMP Algorithm

Input: Signal s and matrix V, ε > 0, c(0) = 0, S(0) = ∅

1: while ∥V∗(s−Vc(i−1))∥∞ > ε do
2: j(i) = argmax0≤j≤N |[V∗(s−Vc(i−1))]j |
3: S(i) = S(i) ∪ {j(i)}
4: c(i) = argminc

{
∥s−Vc∥2 | supp(c) ⊆ S(i)

}
5: end while

Output: {cℓ, tℓ}ℓ∈Lλ
, where Lλ = S(iend) and tℓ = ℓT.

As ΦΩ, FΩ have the same bandwidth, (8) can be rewritten as

fFBP =
1

2
R#(FΩ ∗ Rθf)

and we refer to [17]–[19] for a detailed discussion of the
reconstruction error ∥f − fFBP∥L2(R2).

The overall recovery scheme, called OMP-FBP method, is
summarized in Algorithm 2, where formula (8) is discretized
using a standard approach. In more details, we apply the
composite trapezoidal rule to discretize the convolution ∗ and
back projection R# leading to the discrete reconstruction via

fFBP(x) =
T

2M

M−1∑
m=0

K′∑
k=−K

FΩ(x · θm − tk) pθm
(tk),

and more concisely, fFBP = 1
2R

#
D(FΩ ∗D pθ). To reduce the

computational costs, one typically evaluates the function

hθj (t) = (FΩ ∗D pθj )(t) for t ∈ R

only at t = ti, i ∈ I , for a sufficiently large I ⊂ Z and
interpolates the value hθk

(t) for t = x · θj using a suitable
scheme. Due to [20], the optimal sampling conditions for fixed
bandwidth Ω > 0 read T ≤ π

Ω , K ′ = K ≥ 1
T and M ≥ Ω.

B. Theoretical Recovery Guarantees

Based on Algorithm 2, we now derive theoretical guarantees
for the exact recovery of the Radon samples pθ[k] from pλθ [k]
for k = 0, . . . , N and fixed θ ∈ S1. To this end, we first
prove an injectivity property of certain reduced Vandermonde
matrices. Thereon, suitable conditions on the index set S in
Algorithm 1 lead to the exact reconstruction of the parameter
set {cℓ}ℓ∈Lλ

. Finally, we show that this will imply the exact
reconstruction of pθ.

In the following we consider the Vandermonde matrix

V(z) =


1 z1 z21 · · · zL−1

1

1 z2 z22 · · · zL−1
2

...
...

...
...

1 zJ z2J · · · zL−1
J

 ∈ CJ×L (9)

for z = (z1, . . . , zJ)
⊤ ∈ CJ with J ∈ N and L ∈ N.

Furthermore, we define the reduced Vandermonde matrix

VS(z) = (Vm(z))m∈S

for S ⊆ {0, . . . , L − 1}, i.e., VS(z) consists of the columns
Vm(z) of V(z) with m ∈ S . In the following Lemma we
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show a sufficient condition for the injecticity of certain reduced
Vandermonde matrices.

Lemma 1. Let z = (z1, . . . , zJ) ∈ CJ with zi ̸= zj for all
i ̸= j. Moreover, let S ⊆ {0, . . . , L − 1}. Then, the reduced
Vandermonde matrix VS(z) ∈ CJ×|S| of V(z) ∈ CJ×L in (9)
is injective if M = maxm∈S |m|< J .

Proof. Let the indices of S = {mj}|S|
j=1 be of increasing order,

i.e., m1 < m2 < · · · < m|S| so that m|S| = M. We denote the
columns of VS(z) by Vm = (zm1 , . . . , zmJ )⊤ ∈ CJ . Assume
that γm1

Vm1
+ γm2

Vm2
+ · · ·+ γMVM = 0 for coefficients

γm1
, γm2

, . . . , γM ∈ C. For each 1 ≤ j ≤ J we then have

γm1
zm1
j + γm2

zm2
j + . . .+ γMzMj = 0. (10)

Therefore, each zj must be a root of the polynomial

p(t) = γm1
tm1 + γm2

tm2 + . . .+ γMtM.

As (10) holds for all j = 1, . . . , J , p has J distinct roots.
Since p is a complex polynomial of degree at most M < J ,
we have p ≡ 0 due to the fundamental theorem of algebra.
Therefore, γm1

= . . . = γM = 0. Hence, the column vectors
of VS(z) are linearly independent. Consequently, the matrix
VS(z) has full column rank and, thus, it is injective.

The result of Lemma 1 can be exploited to prove the
exact recovery of the coefficients {cℓ, tℓ}ℓ∈Lλ

by means of
Algorithm 1.

Theorem 1. (OMP recovery) Let V ∈ C(N−2NΩ−1)×(N+1)

be defined as in (7) and s ∈ CN−2NΩ−1 be defined as in (6).
Then, Algorithm 1 recovers the parameters {cℓ, tℓ}ℓ∈Lλ

in P
iterations if Lλ ⊆ S(P ) and maxm∈S(P ) |m|< N − 2NΩ − 1.

Proof. In our setting, we have s = psλθ = Vc† with c† ∈ CN+1

given by

c† =

{
cℓ for ℓ ∈ Lλ

0 otherwise.

In step 4 of the P -th iteration of Algorithm 1, we determine

c(P ) = argmin
c∈CN+1

{∥s−Vc∥2 | supp(c) ⊆ S(P )}

= argmin
c∈CN+1

{∥V(c† − c)∥2 | supp(c) ⊆ S(P )}

= argmin
c∈CN+1,

supp(c)⊆S(P )

∥VS(P )(c†|S(P )−c|S(P ))∥2,

where c†|S(P )= (c†j)j∈S(P ) and c|S(P )= (cj)j∈S(P ) . Since
Lλ ⊆ S(P ), c† belongs to the set of valid minimizers and
according to Lemma 1, the reduced Vandermonde matrix
VS(P ) is injective. Therefore, we have ker(VS(P )) = {0},
which implies c|S(P )= c†|S(P ) and, thus, c(P ) = c†.

We can finally conclude recovery of the unfolded Radon
projections pθ by means of Algorithm 2 under the assumption
of compact λ-exceedance, see Definition 1.

Corollary 1. Let λ > 0 and, for θ ∈ S1, let pθ ∈ Bλ
ρ be of

compact λ-exceedance with parameter ρ > 0. Moreover, let

Algorithm 2 OMP-FBP Method
Input: MRT samples pλθm

[k] = pλθm
((k−K)T) for k ∈ [0, N ]

and m ∈ [0,M − 1], bandwidth Ω > 0, threshold ε > 0

1: for θ ∈ {θm}M−1
m=0 do

2: Set pλ
θ
[n] = ∆pλθ [n] and compute ppλ

θ
[n].

3: Estimate {cℓ, tℓ}ℓ∈Lλ
by applying Algorithm 1.

4: Compute psλθ [n] =
∑

ℓ∈Lλ
cℓ exp

(
−iω0n

T tℓ
)

5: Set pp
θ
[n] = ppλ

θ
[n] + psλθ [n] and compute p

θ
[k].

6: Estimate pθ[k] by anti-difference.

7: end for

Output: OMP-FBP reconstruction fFBP = 1
2R

#
D(FΩ ∗D pθ).

pθ[k] = pθ((k −K)T ) for k = 0, . . . , N with N = K +K ′.
Assume that

T <
π

Ω
, K ≥ ρT−1, K ′ ≥ πρT−1 + (K + 1)ΩT

π − ΩT
.

Then, steps 2–6 in Algorithm 2 exactly recover pθ[k] from
pλθ [k] for k = 0, . . . , N with at most N − 2NΩ − 1 iterations
in Algorithm 1 if V in step 4 of Algorithm 1 is replaced by
its restriction VS to S = {0, . . . , N − 2(NΩ − 1)}.

Proof. Due to the assumptions pθ satisfies

|pθ(t)|≤ λ ∀ |t|> (K ′ − 2(NΩ − 1))T.

Therefore, pθ[k] = pλθ [k] for all k > N−2(NΩ−1) and, hence,
maxℓ∈Lλ

ℓ ≤ N−2(NΩ−1). After at most P = N−2NΩ−1
iterations we have Lλ ⊆ S(P ) ⊆ S. Moreover, by construction
we have maxm∈S(p) |m|< N − 2NΩ − 1. Thus, Theorem 1
implies the exact recovery of pθ[k] for k = 0, . . . , N .

Note that by defining the oversampling factor OF =
TS
T with

Nyquist rate TS = π
Ω , the sufficient condition in Corollary 1

can be rewritten as

OF > 1, K ≥ ρT−1, K ′ ≥ ρT−1 + (K + 1)OF−1

1− OF−1 .

As opposed to this, the standard setting K ′ = K leads to the
condition

OF > 2 and K ≥ ρT−1 + OF−1

1− 2OF−1 .

Consequently, asymmetric radial samples around the origin
allow for a smaller sampling rate at the cost of more samples.

C. Direct Fourier Reconstruction Approach

The above explained OMP-FBP method is a mixture of both
a Fourier domain and spatial domain reconstruction approach.
In contrast to this, we now propose a recovery scheme that
operates solely in Fourier domain. The first step of this novel
reconstruction algorithm follows the above OMP-FBP approach
until the domain shift from the frequency domain to the
spatial domain is applied. Here, however, we circumvent the
domain shift by utilizing a differentiation property of the
discrete Fourier transform, which builds an interface between



BECKMANN et al.: FOURIER-DOMAIN INVERSION FOR THE MODULO RADON TRANSFORM 6

the approach in [1] and the class of direct Fourier inversion
methods for the conventional Radon transform, which we now
explain in more details.

New Second Step: For x ∈ R2, the polar coordinate
representation of the bivariate inverse Fourier transform is
given by

f(x) =
1

(2π)2

∫ π

−π

∫ ∞

0

σF2f(σθ(φ)) e
iσx·θ(φ)dσ dφ. (11)

The class of direct Fourier reconstruction (DFR) approaches is
now characterized by performing the bivariate Fourier inver-
sion in (11) while only using the given Radon measurements.
Therefore, we substitute

F2f(σθ) = F1(Rθf)(σ) ∀ (σ,θ) ∈ R× S1, (12)

which holds according to the Fourier slice theorem.
This simple Radon inversion strategy is in contrast to the

above described FBP method that uses a univariate Fourier
inversion step, followed by the application of the back pro-
jection operator in spatial domain. Since the DFR approaches
operate in frequency domain, we can almost directly adapt to
the first step of our OMP-FBP reconstruction procedure. Our
goal is to utilize the reconstructed frequency information of
the Radon data from the first step for the application of the
DFR approach without explicitly computing pθ. The fusion of
both steps results in a Fourier-based reconstruction approach
of the original data from modulo Radon samples.

In the first step of the OMP-FBP approach we compute pp
θ

and, thus, to apply the DFR approach we need to transition
from pp

θ
to ppθ. As the discrete Fourier transform and the

forward difference operator are non-commutative, we now
formulate and prove a relation between a signal and its forward
differences in the Fourier domain. This relation is captured by
the following discrete differentiation property (DDP).

Proposition 1. (Discrete differentiation property (DDP)) For
z = (z[0], . . . , z[N ]) ∈ CN+1 let z̃ ∈ CN denote its reduced
discrete Fourier transform, for n = 0, . . . , N − 1 defined as

z̃[n] =

N−1∑
k=0

z[k] e
−2πink/N .

Then, we have

pz[n] =
(
e
2πin/N − 1

)
z̃[n]− e

2πin/N(z[0]− z[N ])

for all n = 0, . . . , N − 1.

Proof. For n = 0, . . . , N − 1 we use the following direct
calculations

pz[n] =
∑N−1

k=0
(z[k + 1]− z[k]) e

−2πink/N

=
∑N−1

k=0
z[k + 1] e

−2πink/N −
∑N−1

k=0
z[k] e

−2πink/N

so that

pz[n] = e
2πin/N

∑N

m=1
z[m]e−

2πinm/N − z̃[n]

=
(
e
2πin/N − 1

)
z̃[n]− e

2πin/N(z[0]− z[N ]),

which completes the proof.

Algorithm 3 OMP-DFR Method
Input: MRT samples pλθm

[k] = pλθm
((k−K)T) for k ∈ [0, N ]

and m ∈ [0,M − 1], bandwidth Ω > 0, threshold ε > 0

1: for θ ∈ {θm}M−1
m=0 do

2: Set pλ
θ
[n] = ∆pλθ [n] and compute ppλ

θ
[n].

3: Estimate {cℓ, tℓ}ℓ∈Lλ
by applying Algorithm 1.

4: Compute psλθ [n] =
∑

ℓ∈Lλ
cℓ exp

(
−iω0n

T tℓ
)
.

5: Set pp
θ
[n] = ppλ

θ
[n] + psλθ [n].

6: Apply DDP from (14) and (16) to obtain p̃θ[n]

7: Set pfΩ[nθ] = p̃θ[n].

8: end for
9: Compute fDFR from pfΩ using a chosen DFR method.

Output: OMP-DFR reconstruction fDFR.

Applying Proposition 1 to our setting, for N = K+K ′ and

p̃θ[n] =

N−1∑
k=0

pθ[k]e
−i 2πnk

N for n = 0, . . . , N − 1 (13)

we have

pp
θ
[n] = (eiω0n − 1)p̃θ[n]− eiω0n (pθ[0]− pθ[N ])

= (eiω0n − 1)p̃θ[n]− eiω0n
(
pλθ [0]− pλθ [N ]

)
, (14)

where the last equality holds if no folds occur in the first and
last sample of the signal pθ. For compactly supported target
functions f this can be ensured if the sampling range is chosen
sufficiently large, which can be made precise by considering
functions of compact λ-exceedance, cf. Definition 1.

Note that by rearranging (14), we can determine p̃θ[n] from
pp
θ
[n] for all n = 1, . . . , N−1. However, this cannot be applied

for n = 0 according to the vanishing factor (eiω0n−1) in this
case. Alternatively, we apply the mean value property

p̃θ[0] =
∑N−1

k=0
pθ[k] =

∑N−1

k=0
(sλθ [k] + pλθ [k]), (15)

where instead of explicitly computing the residual samples
sλθ [k] for k = 0, . . . , N −1 we exploit the previously obtained
parameter set {cℓ}ℓ∈Lλ

from OMP and rewrite (15) as

p̃θ[0] =
∑N−1

k=0

(∑
ℓ<k

cℓ + pλθ [k]
)
. (16)

Combining the above described first step and this new
second reconstruction step fully circumvents the explicit com-
putation of Radon projections pθ in spatial domain and,
hence, leads to a direct Fourier reconstruction scheme for
the modulo Radon transform, called OMP-DFR method, which
is summarized in Algorithm 3. Altogether, the approximate
reconstruction fDFR is obtained by applying the DDP to the
recovered signal pp

θ
from the first step and subsequently using

the obtained p̃θ as input data for the selected DFR approach.
The reconstruction scheme uses the modulo Radon projections
pλθm

[k] for k = 0, . . . ,K + K ′ and m = 0, . . . ,M − 1 at a
predefined modulo threshold λ and the OMP stopping criterion
∥V∗(s−Vc(i−1))∥ ≤ ε. In the following, we propose a suit-
able DFR approach for our modulo reconstruction framework.
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D. Overview of Direct Fourier Reconstruction Methods

A major challenge of the DFR approaches lies in the
discretization of the two-dimensional Fourier inversion of a
function, captured in (11). Due to the relation given by (12),
sampling from Radon data with the same strategy as in (2)
yields the samples of F2f on a polar coordinate grid. However,
to simply apply the common inverse discrete Fourier trans-
form (IDFT), we require equidistant samples on a Cartesian
coordinate grid. The most intuitive transition between the two
grids is a direct interpolation between both coordinate grids.
However, as stated for example in [20], this may produce
severe artefacts in the reconstruction.

More sophisticated DFR methods improve reconstruction
quality by adapting the sampling strategies. From existing
methods, it is possible to distinguish between interpolating
and non-interpolating algorithms as well as categorizing them
into adapted sampling in the frequency domain and adapted
sampling in the spatial domain.

The linogram method, proposed in [20], is an interpolating
method which uses adapted sampling in the frequency domain
in order to obtain frequency samples on concentric squares lo-
cated around the origin, i.e., on a linogram. Another linogram
approach from [21] uses sampling points on the linogram in
the spatial domain of the Radon transform. This avoids any
kind of interpolation in the frequency domain.

The gridding method in [22] uses convolutions with a suit-
able window function rather than interpolations to approximate
the samples of F2f on a Cartesian grid. A further method
is introduced in [23]. It classifies as a non-interpolating DFR
method with adapted sampling in Fourier domain and is based
on an efficient computation of the inverse discrete Fourier
transform by utilizing a suitable algorithm for non-equispaced
samples in Fourier domain.

In this work, we focus on the approach proposed in [23],
since it is suitable to our framework and has shown reasonable
reconstruction quality, as e.g. captured in Section IV. In this
case, formula (11) is approximated by utilizing non-equispaced
discrete Fourier inversion, that is efficiently implemented by
the non-equispaced fast Fourier transform (NFFT) algorithm.
Accordingly, we refer to this as the NFFT-Radon approach and
choosing this reconstruction method in Algorithm 3 as DFR
method leads to the OMP-NFFT algorithm. In the following, we
briefly explain the discretization steps in [23].

Let fΩ be the pre-filtered version of f with bandwidth Ω
due to the pre-filtering steps in Section II. We can write the
bivariate Fourier inversion formula (11) as

fΩ(x) =
1

8π2

∫ π

−π

∫ ∞

−∞
|σ|F2fΩ(σθ(φ))e

iσx·θ(φ)dσdφ (17)

and set h(σ) = |σ|F2fΩ(σθ(φ))e
iσ(x·θ(φ)) for σ ∈ R. Then,

Poisson’s summation formula yields

F1h(0) +
∑

n∈Z\{0}

F1h(2n) = π

K−1∑
k=−K

h (πk) ,

where the truncation of the series on the right hand side is
valid if the sampling condition K > Ω

π is satisfied.

Assuming that h is essentially bandlimited with sufficiently
small bandwidth Ωh ≪ 2, a result from [24] states that∑

n∈Z\{0}

F1h(2n) ≈ −π2

6
F2fΩ(0).

With this, the previous steps give the approximation∫ ∞

−∞
|σ|F2fΩ(σθ(φ))e

iσ(x·θ(φ)) dσ

≈ π2
K−1∑
k=−K

|k|F2fΩ(πkθ(φ))e
iπk(x·θ(φ)) +

π2

6
F2fΩ(0)

of the inner integral in (17). The outer integral can be
discretized by applying the trapezoidal rule with step size
∆φ = π

M , yielding the approximation

fΩ(x) ≈
π

8M

M−1∑
m=−M

K−1∑
n=−K

νnF2fΩ(πθmn)eiπnx·θm , (18)

where

νn =

{
1
12 for n = 0,

n otherwise.

Together with the Fourier slice theorem, the approximation

F2fΩ(πθ(φm)n) = F1(pθm)(πn) ≈ qpθm [n]

for n = −K, . . . ,K−1 is used in [23], where qpθ[n] is obtained
via

qpθ[n] =

K−1∑
k=−K

pθ(kT) e
−iπnk/K

and we set K ′ = K, which can be generalized.
Following the steps of Algorithm 3, p̃θ[n] is computed as

in (13) for n = 0, . . . , 2K before applying the chosen DFR
approach. According to former index conventions, we cannot
use qpθ and p̃θ interchangeably for the computation of (18),
although both versions of the DFT are based on the same set
of Radon samples. However, the relation

p̃θ[n] = (−1)nqpθ[n]

can be derived, which can be applied in order to compute the
Fourier inversion given in (18) within the previous setting of
Algorithm 3. For n = −K, . . . ,−1 we use p̃θ[n] = p̃θ[n+2K]
to avoid additional computations.

Since (18) requires a large number of algorithmic opera-
tions, the authors of [23] provide a suitable algorithm for
a more efficient computation. The proposed non-equispaced
fast Fourier transform (NFFT) works for samples that are
not necessarily equispaced in time or frequency domain,
where (18) corresponds to the latter case. The algorithm is
of the same computational complexity as FFT.

Similar to the FBP method, in (18) we can apply a low-pass
reconstruction filter with even window W ∈ L∞(R) satisfying
supp(W ) ⊆ [−1, 1] in order to filter the high frequency com-
ponents, leading to the approximate reconstruction formula

fNFFT(x) =
π

8M

M−1∑
m=−M

K−1∑
n=−K

νnW
( πn

NΩ

)
p̃θm [n]eiπnx·θm .
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To close this section, we want to comment on the varying
data sizes in Algorithms 2 and 3 during the reconstruction
process. By applying the DDP in step 6 of Algorithm 3, we can
compute 2K samples of p̃θ, which perfectly suits the setting of
the NFFT-based reconstruction scheme. In contrast to this, we
can recover 2K+1 samples of pθ in Algorithm 2 by applying
by the anti-difference operator, which in turn suits the setting
of the FBP reconstruction scheme.

E. Runtime Complexity
Despite initial drawbacks of direct Fourier inversion meth-

ods in terms of reconstruction quality, this approach has
been of particular interest in the past due to its beneficial
runtime complexity. Compared to the FBP, the improved
complexity is a consequence of embedding the 2D discrete
Fourier transform, which can be efficiently implemented by the
well-known bivariate fast Fourier transform (FFT) algorithm.
It has a runtime complexity of O(R2 logR) for signals of size
R×R. Based on the embedding, a majority of direct Fourier
inversion methods result in this total order of computational
complexity from an asymptotic perspective. This is in contrast
to the filtered back projection algorithm, which has a runtime
of O(MR2+MK logK) with angular sample size M , radial
sample size K and a quadratic reconstruction grid of size
R×R (cf. [20], [24]).

This advantageous behaviour of DFR methods can be trans-
ferred when comparing the OMP-FBP method to the class of
OMP-DFR methods. Since the latter uses the computationally
more efficient Fourier inversion strategy and directly adapts
to a majority of former steps from the OMP-FBP algorithm, we
find an improvement of computational costs for our proposed
algorithm. As proposed in Section III-C, for demonstration
purposes we choose the DFR approach from [23] for our
further comparison. Note that other approaches of the same
type are provided with comparable computational costs by the
design of the direct Fourier inversion in formula (11).

The first four steps in Algorithm 2 and Algorithm 3 coincide
and include the univariate FFT algorithm, the OMP algorithm
given in Algorithm 1 as well as a sparse matrix multiplication.
The FFT algorithm in step 2 has a computational complexity
of O(K logK). Regarding the OMP algorithm, we see from
Algorithm 1 that the operations of higher computational costs
are given by the index choice in step 2 and the least squares
minimization in step 4. In [25] it is shown that the efficiency
of these steps can be improved by recursively adapting the
residual s − Vc and applying a QR-decomposition to the
reduced-column version of V at each iteration. This results
in a total complexity of O(Ki+ i2) for the i-th iteration step
of the OMP algorithm. Assuming that the algorithm requires
P iteration steps, we arrive at O(KP 2 + P 3) operations.
The subsequent sparse matrix multiplication has a complexity
of O(PK). Since all operations are performed for each
angle, steps 1–7 of Algorithm 2 have a total complexity of
O(MK logK +MKP 2 +MP 3). Consequently, the subse-
quent application of the FBP algorithm leads to an overall
complexity of O(MK logK +MKP 2 +MP 3 +MR2) for
OMP-FBP, where we assume that FBP uses an interpolation
scheme with computational cost of order O(1).

(a) (b) 

Fig. 2. Shepp-Logan phantom and sinogram. (a) Phantom. (b) Sinogram.

As opposed to this, the NFFT-Radon algorithm itself has
a computational complexity of O(R2 logR+R2). Therefore,
the OMP-NFFT algorithm results in a computational complexity
of O(MK logK +MKP 2 +MP 3 +R2 logR+R2). Thus,
assuming a sufficiently large number of angular samples to
achieve a satisfactory reconstruction quality we observe that
OMP-NFFT yields a significant reduction of the total computa-
tional complexity compared to OMP-FBP.

To explain this further, note that the sampling sizes are often
chosen as M = O(K) and R = O(K), which is due to the
optimal sampling conditions for the Radon transform (cf. [20],
[24]). In this setting, the OMP-FBP results in a computational
complexity of the order O(K2 logK +K2P 2 +KP 3 +K3)
compared to O(K2 logK +K2P 2 +KP 3 +K2) for the
OMP-NFFT approach. For a fixed number of P iterations in
the OMP algorithm, we obtain O(K3) as a dominating term
for OMP-FBP compared to O(K2 logK) for OMP-NFFT, which
emphasizes the reduction of computational costs by nearly one
order of magnitude from an asymptotic perspective.

Finally, note that both algorithms include further computa-
tional steps as, for example, the forward difference and anti-
difference operator as well as the DDP. All these operations
are of complexity O(MK) and, therefore, do not act as a
dominating term. For the sake of brevity these have thus been
neglected in the considerations of this section.

IV. NUMERICAL AND HARDWARE EXPERIMENTS

We now present numerical and hardware experiments to
demonstrate our approach for both simulated and real data. To
this end, we use the Shepp-Logan phantom [26], depicted in
Fig. 2(a) along with its sinogram in Fig. 2(b), and the radially
symmetric Bull’s Eye phantom [27] in Fig. 12(a), whose
sinogram is constant in the angular variable, see Fig. 12(b). We
also consider the open source walnut dataset [28] that includes
realistic uncertainties arising from the tomography hardware.

A. Numerical Experiments

Shepp-Logan phantom: In this section, we present recon-
struction results for the Shepp-Logan phantom on a grid of
512× 512 pixels from noisy modulo Radon projections

{p̃λθm
(kT) | −K ≤ k ≤ K, 0 ≤ m ≤ M − 1},

where we use the optimal parameter choices T = 1/K, Ω = M .
Moreover, we set M = 180 and use the cosine reconstruction
filter with the window function W (S) = cos(πS2 )1[−1,1](S).
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Fig. 3. Experiment 1.1. (a) Noisy modulo Radon data with λ = 0.175 and
ν = 0.01 · λ. (b) US-FBP on (a). (b) OMP-FBP on (a). (c) OMP-NFFT on (a).
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Fig. 4. Experiment 1.2. (a) Noisy modulo Radon data with λ = 0.175 and
ν = 0.01 · λ. (b) US-FBP on (a). (b) OMP-FBP on (a). (c) OMP-NFFT on (a).
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Fig. 5. Experiment 2. (a) Noisy modulo Radon data with λ = 0.175, σ =
0.025 · pθ and ν = 0.025 · λ. (b) OMP-FBP on (a). (c) OMP-NFFT on (a).
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Fig. 6. Experiment 3. (a) Noisy modulo Radon data with λ = 0.175, σ =
0.08 · pθ and ν = 0.1 · λ. (b) OMP-FBP on (a). (c) OMP-NFFT on (a).

We start with comparing our proposed OMP-based recon-
struction techniques, the OMP-FBP and OMP-NFFT algorithms,
with the current state-of-the art method, the US-FBP algorithm
from [6]. For measuring the reconstruction quality we make
use of the structural similarity index measure (SSIM) proposed
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Fig. 7. Experiment 4. (a) Noisy modulo Radon data with λ = 0.025 and
shot noise in [−0.2, 0.2]. (b) OMP-FBP on (a). (c) OMP-NFFT on (a).

in [29]. The results for λ = 0.175 are summarized in Fig. 3,
where we use the parameter K = 171 and uniform noise
with noise level ν = 0.01 · λ on the modulo samples, i.e.,
∥p̃λθ − pλθ∥∞≤ ν, leading to a signal-to-noise ratio (SNR) of
34.60 dB. This choice leads to an oversampling factor OF ≈ 3
and, hence, it violates the recovery condition T ≤ 1

Ωe for
US-FBP. Nevertheless, all three methods succeed and yield a
reconstruction of visually the same quality. More exactly, US-
FBP and OMP-FBP yield nearly the same SSIM of 0.89, whereas
OMP-NFFT leads to a slightly smaller SSIM of 0.87. Note that
this is of the same quality as FBP reconstruction from clear
Radon data, in which case we have SSIM = 0.8957.

In contrast to this, reducing the oversampling factor to
OF ≈ 1.5 by choosing K = 85 makes US-FBP reconstruction
fail. The OMP-based reconstructions, however, successfully
recover with visually the same quality, see Fig. 4, where we
obtain an SSIM of 0.8214 for OMP-FBP and an SSIM of
0.7947 for OMP-NFFT. This shows that OMP allows for smaller
oversampling as compared to previous approaches and is in
conformity with our theoretical findings in Section III-B.

To show the robustness of our approach with respect to
noise, in Fig. 5 we use the parameter K = 100, leading to an
oversampling factor of OF ≈ 1.75, and consider a combination
of Gaussian noise before and uniform noise after modulo with
threshold λ = 0.175. More precisely, we added white Gaussian
noise with variance σ2 to the Radon projections pθ, where the
standard deviation σ = 0.025 · pθ depends on the arithmetic
mean pθ of pθ. Moreover, we added uniform noise with noise
level ν = 0.025·λ to the modulo projections, yielding the noisy
projections p̃λθ with an SNR of 13.27 dB. While US-FBP fails
to recover, we observe that OMP-FBP and OMP-NFFT are able
to reconstruct the phantom from this noisy data with again
comparable quality. In numbers, we obtain SSIM = 0.7809
for OMP-FBP and SSIM = 0.7620 for OMP-NFFT.

We observe that the difference in SSIM between OMP-FBP
and OMP-NFFT decreases with an increasing amount of noise.
To demonstrate this, in Fig 6 we added white Gaussian noise
with standard deviation σ = 0.08 ·pθ to the Radon projections
pθ as well as uniform noise with noise level ν = 0.1 ·λ to the
modulo Radon projections. As more noise requires a denser
sampling for successful recovery, we use K = 712 leading to
noisy modulo Radon projections p̃λθ with an SNR of 9.44 dB.
In this case, OMP-FBP yields an SSIM of 0.7247, whereas OMP-
NFFT leads to a slightly larger SSIM of 0.7266.

To simulate the observation that real hardware modulo sam-
ples can be contaminated with sparse outliers, we consider the
case of shot noise in Fig. 7. For each direction θ ∈ {θj}M−1

j=0
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Fig. 8. Walnut dataset. (a) Normalized Radon data. (b) FBP on (a). (c) Noisy modulo Radon data with λ = 0.05 and ν = 0.05 · λ. (d) OMP-FBP on (c).

Fig. 9. Hardware measurements and recovery of Bull’s Eye phantom.

Fig. 10. Fourier spectrum of data in Fig. 9.

we added random values in the range [−0.2, 0.2] at up to 30
positions to noisy modulo Radon projections with threshold
λ = 0.025, uniform modulo noise level ν = 0.1 · λ and
parameter K = 821, leading to the noisy modulo Radon
projections p̃λθ with an SNR of 3.81 dB. While US-FBP
fails, both OMP-based approaches successfully recover. Again,
OMP-NFFT yields a larger SSIM of 0.7830 as OMP-FBP, which
leads to an SSIM of 0.7726.

In conclusion, we observe that our proposed OMP-based
reconstruction approaches allow for a smaller oversampling
factor compared to the current state-of-the-art US-FBP algo-
rithm, where OMP-FBP and OMP-NFFT yield comparable recon-
struction qualities. However, OMP-NFFT is observed to perform
better in the present of more severe noise and outperforms
OMP-FBP in terms of computational complexity, as predicted by
the findings in Section III-E. In our experiments, we observe
a 10-times speed-up in runtime when using NFFT.

Walnut data: In this section, we present reconstruction
results for the walnut dataset from [28], which is transformed
to parallel beam geometry with M = 600 and K = 1128
corresponding to T = 1

1128 . Moreover, the Radon data is
normalized to the dynamical range [0, 1], see Fig. 8(a). The
corresponding FBP reconstruction on a grid on 512 × 512

TTi TG5011
(DAC)

DSO-X
3024A

pθ(t)

pλθ [n]

pθ[n]

Radon Samples pλθ(t)

Mλ–ADC

Fig. 11. Pipeline for hardware experiments with prototype Mλ–ADC.

pixels is shown in Fig. 8(b), where we used Ω = M = 600
and the cosine reconstruction filter. Simulated modulo Radon
projections with λ = 0.05 are displayed in Fig. 8(c), where
we added uniform noise with noise level ν = 0.05 · λ to the
modulo samples to account for quantization errors leading to
noisy modulo Radon projections p̃λθ with an SNR of 23.53 dB.
The reconstruction with OMP-FBP is shown in Fig. 8(d), where
we again used Ω = M = 600 and the cosine filter. We observe
that our proposed algorithm yields a reconstruction of the
walnut that is indistinguishable from the FBP reconstruction
from conventional Radon data, cf. Fig. 8(b), with an SSIM of
0.9896, while compressing the dynamic range by 10 times.

B. Hardware Validation

In this section, we describe the pipeline for hardware
experiments based on our prototype modulo ADC (Mλ–ADC);
the schematic is shown in Fig. 11. For a given bit-budget (or
digital resolution), we will compare our reconstruction with
measurements based on a conventional ADC.

The starting point of our experiment is the Bull’s Eye
phantom [27] in Fig. 12(a), for which we compute the Radon
transform analytically. This serves as a numerical benchmark
for the hardware data (both via Mλ–ADC and conventional
ADC). To this end, the Radon transform is sampled and
numerically filtered with ideal low-pass filter ΦΩ resulting in
(Rθf ∗ ΦΩ)[n], which is subsequently normalized to [0, 1].
This serves as input to the pipeline depicted in Fig. 11. Let us
stress that the phantom is compactly supported and, hence, the
phantom along with its Radon transform are not bandlimited,
as illustrated in Fig. 12(d). Instead, our modified sampling
architecture enforces bandlimitedness of the measurements
due to pre-filtering with ΦΩ.

We then convert the samples to continuous-time representa-
tion using a Digital-to-Analog converter (DAC) (TTi TG5011).
The output of the DAC is fed to the Mλ–ADC [6], [15] and
digitized using an oscilloscope (DSO-X 3024A) resulting in
pλθ [n]. Simultaneously, we also record conventional samples
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Fig. 12. Hardware experiment based on Bull’s Eye phantom. (a) Phantom. (b) ADC measurements. (c) Modulo ADC measurements. (d) Spectrum of (a).
(e) FBP on (b). (f) OMP-FBP on (c). (g) NFFT on (b). (h) OMP-NFFT on (c). NFFT on (b). (i) Spectrum of (e). (j) Spectrum of (f). (k) Spectrum of (g).
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mimicking pθ[n] = (Rθf ∗ΦΩ)[n] via DSO-X 3024A. For both
modulo and conventional samples, the measurement resolution
is ∼ 6.4 bits. The respective samples are shown in Fig. 9.

Note that the hardware pipeline introduces unknown gains
which need to be calibrated and we do so with the knowledge
of ground truth data (gray curve in Fig. 9). After post-
calibration, conventional ADC samples and ground truth match
up to ADC resolution (∼ 6.4 bits) and we apply steps 2–6 in
Algorithm 2 to reconstruct a version of pθ[n] = (Rθf ∗ΦΩ)[n]
given Mλ–ADC samples (black curve in Fig. 9).

As shown in Fig. 10, reconstructed data from Mλ–ADC
output yields a lowered quantization noise floor (∼ 12 dB).
This is because for a given bit-budget (here ∼ 6.4 bits), the
MRT measurements enjoy a higher digital resolution, which
translates to a higher sensitivity in the MRT samples.

Using the radial symmetry of the Bull’s Eye phantom, we
can construct its full RT sinogram in Fig. 12(b) as well as its
full MRT sinogram in Fig. 12(c) by repeating the conventional
ADC samples and the Mλ–ADC measurements, respectively.
The conventional FBP reconstruction from RT data is shown
in Fig. 12(e) and yields an SSIM of 0.8888. In contrast to
this, OMP-FBP based on MRT data leads to an improved SSIM
of 0.9142, see Fig. 12(f). The NFFT reconstruction from RT
data is shown in Fig. 12(g) with an SSIM of 0.8741, whereas
OMP-NFFT leads to SSIM = 0.9003, see Fig. 12(h).

As before, an inspection in Fourier domain, cf. Fig. 12(i)-(l),

reveals that the reconstructions from Mλ–ADC measurements
demonstrate higher sensitivity due to lower quantization noise
floor; OMP-NFFT shows the best out-of-band noise reduction.

V. CONCLUSION

The modulo Radon transform (MRT) has been recently
introduced as a tool for single shot, high dynamic range
tomography. This paper develops a novel recovery method for
the inversion of MRT. The proposed approach is backed by
mathematical guarantees and offers several advantages over
existing art. In particular, it works with near critical sampling
rates, it is agnostic to modulo threshold, it is computationally
efficient and it is empirically stable to system noise. Both
numerical and hardware experiments are used to validate the
theoretical claims of this paper.

In terms of future research, key directions that are highly
relevant to our setup include,
• theoretically analyzing the noise performance of our pro-

posed algorithms to confirm their empirical stability,
• leveraging advanced sparse optimization methods that are

the essential ingredients of our reconstruction method, and
• developing reconstruction strategies that can directly work

with higher dimensions and tensor based imaging models,
which is particularly applicable to voxel-based data.

Beyond the algorithmic aspects, efficient hardware design
implementing the MRT remains an interesting topic on its own.
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S. Siltanen, “Tomographic X-ray data of a walnut,” 2015.

[29] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.


