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Preface

The development of computerized tomography (CT) has revolutionized the field of diagnostic
radiology and CT is by now one of the standard modalities in medical imaging. Its goal consists
in imaging the interior structure of a scanned object by measuring and processing the attenuation
of X-rays along a large number of lines through the cross-sections of the object to be examined.
In this process, a fundamental feature of CT is the mathematical reconstruction of an image by
the application of a suitable and sophisticated algorithm.

The impact of CT in diagnostic medicine has been revolutionary, since it has provided a
non-invasive imaging modality and has enabled doctors to view internal organs with mould-
breaking precision and safety for the patient. Since the invention of the first CT scanner in the
1970s the number of CT scans for diagnostic purpose has been growing extensively. In addition,
there are numerous non-medical imaging applications which are also based on the methods of
computerized tomography. One example is non-destructive testing (NDT) in materials science,
where we want to evaluate the properties of a material without causing damage. Another
application is electron microscopy, which is a typical example for an incomplete data problem,
because only observations in a limited angular range are available.

Mathematically, an X-ray scan provides the line integral values of the object’s attenuation
function along lines in the plane. Hence, the CT reconstruction problem requires the recovery
of a bivariate function f : R2 → R from the knowledge of its line integrals

Rf(t, θ) =
∫

{x cos(θ)+y sin(θ)=t}
f(x, y) d(x, y) for (t, θ) ∈ R × [0, π).

The purely mathematical problem of reconstructing a function from its line integral values
was first studied and analytically solved by the Austrian mathematician J. Radon in 1917 in his
pioneering paper “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser
Mannigfaltigkeiten”, cf. [14]. In that work, Radon derived an explicit inversion formula for the
linear integral transform

R : f 7−→ Rf
under the assumption that the data Rf(t, θ) is complete, i.e., available for all possible values
(t, θ) ∈ R× [0, π). In his honour, the operator R is now known as the Radon transform and the
corresponding integral values are called Radon data.

Historically, the foundation of CT was laid in 1895 by the German physicist W. Röntgen, who
discovered a new kind of radiation, which he called X-radiation to emphasize its unknown type.
Immediately after the discovery, X-rays have been used to image the interior of the human
body. In 1901 his achievements earned Röntgen the first Nobel Prize in Physics. The two
pioneering scientists who were primarily responsible for the development of CT in the 1960s and
1970s were A. Cormack and G. Hounsfield. With their work, the hitherto purely mathematical
problem of reconstructing a bivariate function from the knowledge of its Radon transform has
finally become relevant for practical applications. In [3], [4], Cormack developed mathematical
algorithms to create an image from X-ray scans. At about the same time, but working completely
independently of Cormack, Hounsfield designed the first operational CT scanner as well as the
first commercially available model, see [9]. In 1979 the Nobel Prize for Medicine and Physiology
was jointly awarded to Cormack and Hounsfield for their fundamental achievements.



ii Preface

This lecture gives an introduction to the mathematics of computer(ized) tomography (CT).
We will discuss the principle of X-ray tomography, the mathematical model for the measurement
process, the underlying mathematical reconstruction problem and some classical reconstruction
techniques. Since tomography is a typical example of an inverse problem, we will also discuss
the ill-posedness of the CT reconstruction problem. The following topics will be addressed:

• Imaging principle of X-ray tomography

• Radon transform and its properties

• Filtered back projection

• Ill-posedness of CT reconstruction problem

• Reconstruction techniques

The lecture is mainly based on the following standard references (in alphabetical order):

[2] T. Buzug: Computed Tomography

[6] C. Epstein: Introduction to the Mathematics of Medical Imaging

[7] T. Feeman: The Mathematics of Medical Imaging

[10] A. Iske: Approximation Theory and Algorithms for Data Analysis

[11] A. Kak, M. Slaney: Principles of Computerized Tomographic Imaging

[12] F. Natterer: The Mathematics of Computerized Tomography

[13] F. Natterer, F. Wübbeling: Mathematical Methods in Image Reconstruction
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Chapter 1

Introduction

The term computerized tomography (CT) refers to the reconstruction of a bivariate function
from its line integral values. The expression ’tomography’ is derived from the Ancient Greek
words τ óµoς, which means ’slice’, and γράφω meaning ’to write’.

One of the most prominent examples of X-ray tomography is still transmission CT in medical
imaging and non-destructive testing. Here, the aim consists in recovering the interior of an un-
known two-dimensional object or cross-section of a three-dimensional object from measurements
of one-dimensional X-ray projections. In order to explore the two-dimensional structure of the
object, the X-ray projections are taken from different views. To this end, a source-detector pair
is rotated around the object, see Figure 1.1, where the source emits X-ray beams of a given
initial intensity and the detector measures the intensity of the beams after passing the object.

The imaging principle of X-ray tomography is now based on the fact that the X-ray beams are
attenuated when passing matter. The attenuation of the X-rays depends on the inner structure
of the scanned medium and, thus, carries information about the interior of the unknown object.
When a single X-ray beam of known intensity travels along a straight line from source to detector,
a fraction of the X-ray photons present in the beam is absorbed by the material and the remaining
portion passes through. The intensity of the beam, as it emerges from the medium, is measured
at the detector by counting the arriving photons and the difference of the initial and the final
intensities describes the ability of the material to absorb X-ray photons. These measurements
can be transformed into line integral values of the object’s attenuation function to be recovered.

In this chapter, we briefly explain the physical fundamentals of X-ray tomography, derive its
mathematical model and give a short historical overview of the milestones in CT development.

Source

Detector

Figure 1.1: Imaging principle of X-ray tomography. To explore the inner structure of an object,
a source-detector pair is rotated around the object collecting X-ray projections at different views.
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1.1 Physical principles
X-ray radiation is generated by the deceleration of fast electrons entering a solid metal anode
and consists of electromagnetic waves with wavelengths roughly between 10−8 m and 10−13 m.
The electrons are emitted from a cathode filament, which is heated by applying the heating
voltage Uh to overcome the binding energy of the electrons to the metal of the filament. After
this thermionic emission the electrons are accelerated in the electric field between the cathode
and the anode, which are contained in a vacuum tube called X-ray tube. The electron velocity ν
depends on the acceleration voltage Ua via the conservation law of energy

eUa = 1
2 me ν

2,

where e = 1.602 · 10−19 C denotes the charge and me = 9.109 · 10−31 kg the mass of electrons. In
medical diagnostics Ua is usually chosen between 25kV and 150kV, whereas in material testing
it can reach up to 500kV. A schematic drawing of an X-ray source can be seen in Figure 1.2.

When the electrons reach the surface of the anode, they are abruptly stopped and electro-
magnetic waves are radiated, which leave the tube through a window. Usually, several photons
emerge through the deceleration of one single electron. It can happen, however, that the entire
energy of an electron is transferred into a single photon. This determines the maximum energy
of the X-ray radiation via

Emax = h ν = eUa

and the minimal wavelength of the X-ray spectrum via

λmin = h c

eUa
,

where h is Planck’s constant and c is the speed of light. Thus, the range of wavelengths of the
generated X-ray spectrum depends on the anode voltage Ua. In contrast to this, the intensity
of the X-ray spectrum or the number of photons is solely controlled by the anode current Ia.

The efficiency of the conversion from kinetic energy into X-ray radiation depends on the
anode material, usually tungsten, and the acceleration voltage. Most of the kinetic energy,
approximately 99%, is transferred into thermal energy so that the anode heats up and suffers
from a serious heat problem. Thus, rotating anode disks are used to distribute the thermal load
over the entire anode. The heat capacity Eh of an X-ray tube depends on Ua, Ia and time t via

Eh = Ua · Ia · t

and one has to balance the acceleration voltage, anode current and exposure time appropriately.

window

X-ray source

anode

Uh

cathode

Ua
+

−
shadow

blur

blur

detector

Figure 1.2: Schematic drawing of an X-ray tube and the projection of an object on the detector.
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Figure 1.3: X-ray focus and optical focus depending on the anode angle φ.

The anode surface is angulated with respect to the electron beam and the target area of
the electron beam on the anode is called X-ray focus. The size of the electron beam can be
controlled by manipulating the trajectories of the accelerated electrons with a focusing device
called Wehnelt cylinder. For a fixed electron focus the size of the X-ray focus can be controlled
by varying the anode angle φ. The larger φ, the larger the X-ray focus on which the thermal load
is distributed, but the larger also the effective target area seen by the detector, see Figure 1.3.
This projection of the X-ray focus on the detector is called optical focus and its size determines
the quality of the resulting image. Ideally, the X-rays are created from a point source and an
increase in source size results in penumbra regions on the detector and, thus, in a blurred image,
as illustrated in Figure 1.2. However, a very small anode angle is generally not desired because
the probability of a backscattering of the electrons increases as the angle between the anode
surface normal and the anode rotation axis decreases.

As noted before, the imaging principle of computerized tomography is based on the fact that
X-ray beams are attenuated when passing through matter. The attenuation of X-rays, however,
is a complicated function of the wavelength. In general, low-energy X-rays, i.e., radiation with
a large wavelength, are more attenuated than high-energy X-rays. This is the origin of what
is called beam hardening, which produces artefacts in the reconstructed image, because it is
standard to consider the X-rays to be monochromatic, i.e., radiation of only one wavelength,
within the mathematical reconstruction process. In practice, the beam-hardening artefacts can
be reduced by pre-hardening of the radiation with a metal filter in the X-ray tube.

The X-ray attenuation is due to absorption and scattering of the X-ray photons. Generally,
photon interaction with matter can result in a change in incoming photon energy, photon number
or travelling direction. The most important mechanisms of photon-matter-interaction are

• photoelectric absorption, • Compton scattering, • pair production.
As a consequence of such kind of interactions a photon that interacts with matter is completely
removed from the incident beam, in other words an X-ray beam that crosses a medium is not
degraded in energy but only attenuated in intensity. More precisely, the intensity I(x) of a beam
travelling through an homogeneous medium with thickness x decreases exponential via

I(x) = I0 e−µx,

where I0 is the initial intensity of the beam and µ is the attenuation coefficient of the medium.
In greater detail, photoelectric absorption can happen if the energy of the photon is just

larger than the binding energy of the atomic electrons. In this case, the entire energy of the
photon is absorbed by an electron and the photon vanishes. This process results in a ionization
followed by a subsequent ejection of the electron from the atom, where the energy of the liberated
electron is the difference between the photon energy and the binding energy of the electron.
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Compton scattering can happen if the energy of the X-ray photon is high with respect to the
binding energy of the orbital electrons. In this case, this latter energy can be ignored and the
electrons can be treated as essentially free. If a photon collides with a quasi-free electron, the
photon passes a part of its energy to the electron and the electron is scattered away. Thus, the
scattered photon has a lower energy when it continues to travel through the matter and may be
further attenuated until it is completely absorbed if the material thickness is sufficiently large.

For very high photon energy the pair production effect starts to be relevant. In this process
the photon interacts with an orbital electron or atomic nucleus so that the photon disappears
and its entire energy is absorbed to produce a positron-electron pair.

After passing the matter the remaining photons in the X-ray beam are detected via their
interaction with the detector material. A commonly used detector architecture consists of a scin-
tillation layer followed by a photon detector. The short-wave X-ray radiation is converted into
long-wave light inside the scintillation medium, which is subsequently detected by a photodiode.

In conclusion, the attenuation of X-rays through matter is well understood and the gray
values of CT images are a direct physical representation of the material properties. High values
of the attenuation coefficient, describing the extent to which the X-ray intensity is reduced, are
due to a high density or a high atomic number of the material the X-rays travelled through.
Traditionally, the quantitative Hounsfield unit (HU) scale is used to measure X-ray attenuation,
which compares the attenuation coefficient of the medium passed through with that of water.

1.2 Mathematical model
Let f : R2 → R denote the spatially varying attenuation function of the scanned object, which
describes the proportion of X-ray photons being absorbed by the materials travelled through and
whose support is assumed to lie in a convex set Ω ⊆ R2, see Figure 1.4. Thus, f is a characteristic
quantity of the scanned body and, mathematically, the goal of computerized tomography is to
recover the function f from the given X-ray scans.

In the following we assume that the X-ray beam is monochromatic, i.e., each X-ray photon
has the same energy and the beam propagates with a constant wavelength. Furthermore, we
assume that the beam has zero width and is neither refracted nor diffracted. Hence, the X-ray
beam travels along a straight line ℓ ⊂ R2 through the object under investigation. If I(x) denotes
the intensity of the X-ray beam at position x ∈ Ω, the intensity loss ∆I(x) in a small segment
of ℓ of length ∆x is approximately given by

∆I(x) ≈ −f(x) · I(x) · ∆x.

f

ℓ

x
S

x
D

Ω

Figure 1.4: A single X-ray beam travels along straight line ℓ from source xS to detector xD.
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Taking the limit ∆x → 0 leads us to the ordinary differential equation

d
dxI(x) = −f(x) · I(x), (1.1)

which is known as Beer’s law. If IS denotes the initial intensity of the X-ray at the source xS
and ID its final intensity at the detector xD, integrating (1.1) from source to detector yields∫ ID

IS

1
I

dI = −
∫

ℓ
f(x) dx,

which implies that
log
(
IS
ID

)
=
∫

ℓ
f(x) dx. (1.2)

Since the values IS and ID are measured during the scanning process, the X-ray data provides
us with the line integral values of the attenuation function f along the straight line ℓ ⊂ R2.
Recovering the absorption coefficient f or, equivalently, reconstructing an object from X-ray
projections therefore reduces to solving the integral equation (1.2).

Consequently, the basic CT reconstruction problem can be formulated as follows.

Problem 1.1 (Basic reconstruction problem). Reconstruct a bivariate function f ≡ f(x, y) on
its domain Ω ⊆ R2 from given line integral values∫

ℓ
f(x, y) d(x, y)

along all straight lines ℓ ⊂ R2 passing through Ω.

We wish to remark that in reality the attenuation function f not only depends on the spatial
variable x but also on the energy E of the X-rays. Assuming IS(E) to be the energy spectrum
of the X-ray source, equation (1.2) has to be replaced by

ID =
∫ Emax

0
IS(E) e−

∫
ℓ

f(x,E) dx dE. (1.3)

Using (1.2) instead of (1.3) results in beam-hardening artefacts in the reconstructed image, as
explained before. In practice, however, only equation (1.2) is used. Therefore, this is the basic
mathematical model for the CT imaging process that will be used throughout the lecture.

1.3 Historical milestones
Historically, the foundation of computerized tomography (CT) was laid in 1895 by the German
physicist Wilhelm Röntgen, who discovered X-rays and their capability of penetrating matter.

The purely mathematical problem of reconstructing a function from its line integral values
was analytically solved by the Austrian mathematician Johann Radon in 1917 in his pioneering
paper “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannig-
faltigkeiten”. However, due to the complexity and depth of his mathematical publication the
consequences of his ground-breaking results were revealed only very late in the mid-20th century.
Moreover, the paper was published in German, which hindered a wide distribution of the work.

The two pioneering scientists who were primarily responsible for the development of CT in the
1960s and 1970s were Allan Cormack and Godfrey Hounsfield. Cormack developed mathematical
algorithms to create an image from X-ray scans and Hounsfield designed the first operational
CT scanner as well as the first commercially available model. In 1979 the Nobel Prize for
Medicine was jointly awarded to Cormack and Hounsfield for their fundamental achievements.
In Table 1.1, some of the historical milestones and development steps of CT are summarized.
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Source

Detector

(a) Pencil beam geometry

Source

Detector

(b) Parallel beam geometry

Source

Detector

(c) Fan beam geometry

Figure 1.5: Different scanning geometries.

Retrospectively, four distinct generations of classical CT scanners have emerged, which are
still developed further. Their classification relates to both the way that X-ray tube and detector
are constructed and the source-detector pair moves around the object under investigation.

The first generation involves an X-ray tube that emits a single X-ray beam. A single detector
is situated opposite of the X-ray source and this configuration is moved linearly as well as
rotated through different angles, cf. Figure 1.5(a). This scanning geometry is called pencil beam
geometry. The time-consuming linear movement of the source-detector pair can be avoided by
using an X-ray source emitting parallel X-ray beams and a detector array, see Figure 1.5(b). In
this parallel beam geometry, the source-detector pair only needs to be rotated around the object.

The second generation involves an X-ray source that emits a narrow fan of X-ray beams
and a short detector array consisting of multiple elements. However, since the aperture angle
of the fan beam is small, the source-detector pair still needs to be translated linearly before it
is rotated. Despite the need for linear displacement, the acquisition time was reduced as the
detector array could measure several intensities simultaneous.

The third generation has a substantially larger angle of the X-ray fan and a longer detector
array such that the entire measuring field can be X-rayed simultaneously for one single projection
angle, see Figure 1.5(c). In this way, the need for linear displacement of the source-detector
system is removed and the acquisition time is drastically reduced. This scanning geometry is
referred to as fan beam geometry.

The fourth generation does not differ from the third generation with respect to the X-ray
tube. A fan beam source rotates around the object without linear displacement. The difference
is a closed stationary detector ring and the source path can be either inside or outside the ring.

Table 1.1: Summary of historical CT milestones.
Year Milestone

1895 Röntgen discovers a new kind of radiation, which he named X-rays.
1901 Röntgen receives the first Nobel Prize for Physics.
1917 Radon publishes his epochal work on the solution to the problem of reconstructing a

function from its line integral values.
1963 Cormack contributes the first mathematical algorithms for tomographic reconstruction

from X-ray scans.
1969 Hounsfield shows proof of the principle with the first CT scanner based on a radioactive

source at the EMI research laboratories.
1972 Hounsfield and Ambrose publish the first clinical scans with an EMI head scanner.
1975 Hounsfield and Ambrose set-up the first whole body scanner with a fan beam system.
1979 Cormack and Hounsfield receive the Nobel Prize for Medicine.



Chapter 2

The Radon transform

In this chapter we introduce the Radon transform R used in the mathematical model for the
measurement process in computerized tomography and study some of its fundamental properties.

2.1 Lines in the plane
We have seen that the CT scanner provides line integral values of the function to be reconstructed
along straight lines in the plane. In order to derive a reconstruction theory, we now introduce a
suitable parametrization of these lines, as illustrated in Figure 2.1.

Definition 2.1 (Straight line in the plane). For any pair (t, θ) ∈ R2 of parameters, we define
ℓt,θ ⊂ R2 to be the unique straight line that passes through the point xt,θ = (t cos(θ), t sin(θ)) ∈ R2

and is perpendicular to the unit vector nθ = (cos(θ), sin(θ)) ∈ R2.

We remark that every straight line in the plane can be characterized as ℓt,θ for some real
numbers t, θ ∈ R. Furthermore, for any pair of parameters (t, θ) ∈ R2 holds that

ℓt,θ+2π = ℓt,θ and ℓt,θ+π = ℓ−t,θ. (2.1)

Thus, each line in the plane has infinitely many different representations of the form ℓt,θ. To
enforce uniqueness, we restrict the parameter pair (t, θ) to t ∈ R and θ ∈ [0, π) so that the set{

ℓt,θ
∣∣ t ∈ R, θ ∈ [0, π)

}
contains exactly all straight lines in the plane. For fixed t ∈ R and θ ∈ [0, π) we now parametrize
the line ℓt,θ as follows.

θ

x

y

ℓt,θ

xt,θ =
(
t cos(θ), t sin(θ)

)
nθ

n⊥
θ

•

t

Figure 2.1: Representation of the straight line ℓt,θ ⊂ R2 with parameters (t, θ) ∈ R × [0, π).
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Remark 2.2 (Parametrization of the straight line ℓt,θ). For any fixed angle θ ∈ [0, π), we have

nθ = (cos(θ), sin(θ)) ⊥ (− sin(θ), cos(θ)) = n⊥
θ .

Therefore, every point (x, y) on the line ℓt,θ is of the form

(x, y) = t · nθ + s · n⊥
θ = (t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) (2.2)

for some s ∈ R and, consequently,

ℓt,θ =
{
(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ))

∣∣ s ∈ R
}
.

We close this paragraph on lines in the plane by noting that for fixed angle θ ∈ [0, π) there
is a unique straight line ℓt,θ passing through a given point (x, y) ∈ R2.

Remark 2.3. For any point (x, y) ∈ R2 in the plane and a given angle θ ∈ [0, π) there exists a
unique value for t ∈ R such that the straight line ℓt,θ passes through (x, y). The unique t, s ∈ R
satisfying

x = t cos(θ) − s sin(θ) and y = t sin(θ) + s cos(θ)

are given by
t = x cos(θ) + y sin(θ) and s = −x sin(θ) + y cos(θ)

and meet the relation
x2 + y2 = t2 + s2.

With the described parametrization of straight lines in the plane, we finally reformulate the
basic CT reconstruction problem as follows.

Problem 2.4 (Basic CT reconstruction problem). On given domain Ω ⊆ R2, reconstruct a
bivariate function f ≡ f(x, y) from its line integral values∫

ℓt,θ

f(x, y) d(x, y), (2.3)

which are assumed to be given for all parameters (t, θ) ∈ R × [0, π).

2.2 Definition and basic properties

We have seen that the scanning process in CT provides us with the line integrals of a bivariate
function f along straight lines in the plane, from which we have to reconstruct f . For f ∈ L1(R2)
and any parameter pair (t, θ) ∈ R2 the line integral in (2.3) can be rewritten as∫

ℓt,θ

f(x, y) d(x, y) =
∫
R
f(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) ds,

where we used the parametrization (2.2) with the arclength element

∥(ẋ(s), ẏ(s))∥R2 ds =
√

(− sin(θ))2 + (cos(θ))2 ds = ds.

The integral transform which maps a function f : R2 → R into the set of its line integrals was
firstly investigated by the Austrian mathematician Johann Radon in 1917. In his honour, this
integral transform is called Radon transform and, thus, the CT reconstruction problem simply
seeks for the inversion of the Radon transform on R2.
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Definition 2.5 (Radon transform). Let f ∈ L1(R2) be a bivariate function in Cartesian coor-
dinates. Then, the Radon transform Rf of f at the point (t, θ) ∈ R2 is defined as

Rf(t, θ) =
∫

ℓt,θ

f(x, y) d(x, y) =
∫
R
f(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) ds. (2.4)

The graph of the Radon transform Rf in the (t, θ)-plane is called sinogram of f .

Note that the Radon transform Rf of a bivariate function f is 2π-periodic in the angular
variable θ and, due to relation (2.1), it suffices to consider Rf only on the domain R × [0, π).
Further, an application of Fubini’s theorem shows that the Radon transform Rf of f ∈ L1(R2)
is well-defined almost everywhere on R × [0, π) in the sense that for any angle θ ∈ [0, π) the
integral in (2.4) is well-defined for almost all t ∈ R.

Proposition 2.6 (Well-definedness of the Radon transform). For f ∈ L1(R2), the Radon trans-
form Rf is well-defined almost everywhere on R × [0, π).

Proof. Let f ∈ L1(R2). We define the auxiliary function H : R2 × [0, π) → R2 as

H(s, t, θ) = (t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) for (s, t, θ) ∈ R2 × [0, π).

Then, H is continuous on R2 × [0, π) and we have

Rf(t, θ) =
∫
R
f(H(s, t, θ)) ds ∀ (t, θ) ∈ R × [0, π).

Note that, for fixed angle θ ∈ [0, π), the mapping

(s, t) 7−→ (t cos(θ) − s sin(θ), t sin(θ) + s cos(θ))

is a rotation in R2 and, thus, measure preserving. In particular, the mapping

(s, t) 7−→ f(H(s, t, θ))

is in L1(R2) for all θ ∈ [0, π), since f ∈ L1(R2) by assumption. Therefore, Fubini’s theorem
shows that the partial mapping

s 7−→ f(H(s, t, θ))

is integrable on R for almost all t ∈ R and all θ ∈ [0, π). This implies that

(t, θ) 7−→
∫
R
f(H(s, t, θ)) ds = Rf(t, θ)

is well-defined for almost all t ∈ R and all θ ∈ [0, π).

Remark 2.7. The Radon transform Rf of a function f is defined everywhere on R × [0, π)
if the integral of f along the line ℓt,θ exists for all pairs (t, θ) ∈ R × [0, π). To ensure this, it
suffices to require that f is continuous on R2 and has compact support.

With Definition 2.5 the classical CT reconstruction problem can be reformulated as follows.

Problem 2.8 (Reconstruction problem). For given domain Ω ⊆ R2, reconstruct a bivariate
function f ∈ L1(Ω) from its Radon data{

Rf(t, θ)
∣∣ t ∈ R, θ ∈ [0, π)

}
.

Therefore, the CT reconstruction problem seeks for the inversion of the Radon transform R.
However, before explaining the inversion of R, we collect some of its fundamental properties.
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Observation 2.9. The Radon transform R maps a bivariate function f ≡ f(x, y) in Cartesian
coordinates onto a bivariate function Rf ≡ Rf(t, θ) in polar coordinates.

The first two important properties of the Radon transform are its linearity and evenness.

Proposition 2.10 (Linearity of the Radon transform). The Radon transform R is a positive
linear integral operator, i.e., for all α, β ∈ R and f, g ∈ L1(R2) we have

R(αf + βg) = αRf + βRg

and
f ≥ 0 =⇒ Rf ≥ 0.

Furthermore, the Radon transform Rf of f ∈ L1(R2) satisfies the evenness condition

Rf(−t, θ + π) = Rf(t, θ) ∀ (t, θ) ∈ R2.

Proof. The statement follows from the positivity and linearity of the integral and (2.1).

The next theorem is concerned with the continuity of the Radon transform as a mapping

R : L1(R2) → L1(R × [0, π)).

Proposition 2.11 (Continuity of the Radon transform). The Radon transform R is a contin-
uous operator from L1(R2) to L1(R × [0, π)). In particular, for f ∈ L1(R2) we have

∥Rf∥L1(R×[0,π)) ≤ π ∥f∥L1(R2).

Proof. Let f ∈ L1(R2) and θ ∈ [0, π) be fixed. By the definition of the Radon transform R
follows that ∫

R
|Rf(t, θ)| dt =

∫
R

∣∣∣∣ ∫
ℓt,θ

f(x, y) d(x, y)
∣∣∣∣ dt

≤
∫
R

∫
R

|f(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ))| ds dt.

Applying the transformation

x = t cos(θ) − s sin(θ) and y = t sin(θ) + s cos(θ),

we get dx dy = dt ds and, consequently,∫
R

|Rf(t, θ)| dt ≤
∫
R

∫
R

|f(x, y)| dx dy = ∥f∥L1(R2).

This gives

∥Rf∥L1(R×[0,π)) =
∫ π

0

∫
R

|Rf(t, θ)| dt dθ ≤ ∥f∥L1(R2)

∫ π

0
1 dθ = π ∥f∥L1(R2).

Hence, R is a continuous operator from L1(R2) to L1(R × [0, π)).

A special situation occurs if the function f : R2 → R is radially symmetric, i.e., f is invariant
under rotations. This means that there exists a function f0 : R → R with

f(x, y) = f0(∥(x, y)∥R2) ∀ (x, y) ∈ R2.

Proposition 2.12. If the function f ∈ L1(R2) is radially symmetric, its Radon transform Rf
depends only on the modulus |t| of the radial variable t ∈ R, but not on the angle θ ∈ [0, π).
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Proof. Let f ∈ L1(R2) be radially symmetric. Thus, there exists a function f0 : R → R with

f(x, y) = f0(x2 + y2) ∀ (x, y) ∈ R2.

With this, for all (t, θ) ∈ R × [0, π) follows that

Rf(t, θ) =
∫

ℓt,θ

f(x, y) d(x, y) =
∫
R
f(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) ds

=
∫
R
f0((t cos(θ) − s sin(θ))2 + (t sin(θ) + s cos(θ))2) ds

=
∫
R
f0(t2 + s2) ds.

This shows that Rf(t, θ) is independent of the angular variable θ ∈ [0, π) and only depends on
the absolute value |t| of the radial variable t ∈ R.

Another important property of R is that the compact support of a function f carries over
to its Radon transform Rf .
Proposition 2.13. Let f ∈ L1(R2) have compact support, i.e., there exists an R > 0 such that

f(x, y) = 0 ∀ (x, y) ∈ R2 : x2 + y2 > R2.

Then, Rf has compact support as well with

Rf(t, θ) = 0 ∀ |t| > R, θ ∈ [0, π).

Proof. For each fixed θ ∈ [0, π) and t ∈ R with |t| > R, we have

f(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) = 0 ∀ s ∈ R.

This implies that
Rf(t, θ) = 0 ∀ (t, θ) ∈ R × [0, π) : |t| > R

and, hence, Rf has compact support as well.

We now come to the first basic analytical example. To this end, let ⊔R : R → R denote the
characteristic function of the interval [−R,R], i.e.,

⊔R(S) = χ[−R,R](S) =
{

1 for |S| ≤ R

0 for |S| > R.

Example 2.14. Consider the characteristic function χBR(0) of the ball BR(0) ⊂ R2 of radius
R > 0 around 0, i.e.,

χBR(0)(x, y) =
{

1 for x2 + y2 ≤ R2

0 for x2 + y2 > R2.

For all (t, θ) ∈ R × [0, π) we then have

χBR(0)(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) =
{

1 for t2 + s2 ≤ R2

0 for t2 + s2 > R2

and, thus, for the Radon transform of χBR(0) follows that

RχBR(0)(t, θ) =
∫
R
χBR(0)(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) ds

=
{

2
√
R2 − t2 for |t| ≤ R

0 for |t| > R
= 2

√
R2 − t2 ⊔R(t).

To calculate the Radon transform of more involved examples, we need some additional basic
properties of the Radon transform, namely its shift, scaling and rotation property.
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We start with studying the effect of shifting the argument in the target function f .

Proposition 2.15 (Shift property of the Radon transform). Let f ≡ f(x, y) be a bivariate
function with Radon transform Rf ≡ Rf(t, θ). For a given vector c = (cx, cy) ∈ R2 we define
the shifted function fc via

fc(x, y) = f(x− cx, y − cy) for (x, y) ∈ R2.

Then, the Radon transform Rfc of fc is given by

Rfc(t, θ) = Rf(t− cx cos(θ) − cy sin(θ), θ) ∀ (t, θ) ∈ R × [0, π).

Proof. For fixed (t, θ) ∈ R × [0, π), the definition of the Radon transform R yields

Rfc(t, θ) =
∫
R
fc(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) ds

=
∫
R
f(t cos(θ) − s sin(θ) − cx, t sin(θ) + s cos(θ) − cy) ds,

where

t cos(θ) − s sin(θ) − cx = (t− cx cos(θ)) cos(θ) − (s+ cx sin(θ)) sin(θ)
= (t− cx cos(θ) − cy sin(θ)) cos(θ) − (s+ cx sin(θ) − cy cos(θ)) sin(θ)

and

t sin(θ) + s cos(θ) − cy = (t− cy sin(θ)) sin(θ) + (s− cy cos(θ)) cos(θ)
= (t− cx cos(θ) − cy sin(θ)) sin(θ) + (s+ cx sin(θ) − cy cos(θ)) cos(θ).

Consequently, by substituting

τ = t− cx cos(θ) − cy sin(θ) and σ = s+ cx sin(θ) − cy cos(θ),

we obtain dσ = ds and can conclude that

Rfc(t, θ) =
∫
R
f(τ cos(θ) − σ sin(θ), τ sin(θ) + σ cos(θ)) dσ = Rf(τ, θ)

= Rf(t− cx cos(θ) − cy sin(θ), θ),

which completes the proof.

We continue with the effect of scaling the argument in the target function f .

Proposition 2.16 (Scaling property of the Radon transform). Let f ≡ f(x, y) be a bivariate
function with Radon transform Rf ≡ Rf(t, θ). For given positive constants a, b > 0 we define
the scaled function fa,b via

fa,b(x, y) = f
(x
a
,
y

b

)
for (x, y) ∈ R2.

Then, the Radon transform Rfa,b of fa,b is given by

Rfa,b(t, θ) = ab

ca,b(θ)
Rf

(
t

ca,b(θ)
, atan

( b
a

tan(θ)
))

∀ (t, θ) ∈ R × [0, π),

where
ca,b(θ) =

√
a2 cos2(θ) + b2 sin2(θ) > 0

and

atan
( b
a

tan(θ)
)

=


arctan

(
b
a tan(θ)

)
for sin(θ) cos(θ) > 0

0 for sin(θ) = 0
π
2 for cos(θ) = 0
arctan

(
b
a tan(θ)

)
+ π for sin(θ) cos(θ) < 0

∈ [0, π).
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Proof. For fixed (t, θ) ∈ R × [0, π), the definition of the Radon transform yields

Rfa,b(t, θ) =
∫
R
fa,b(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) ds

=
∫
R
f
( t
a

cos(θ) − s

a
sin(θ), t

b
sin(θ) + s

b
cos(θ)

)
ds.

By considering the modified angle

ϑ = atan
( b
a

tan(θ)
)

∈ [0, π),

we have
cos(ϑ) = a cos(θ)

ca,b(θ)
and sin(ϑ) = b sin(θ)

ca,b(θ)
.

Consequently, using the relation

c2
a,b(θ) = a2 cos2(θ) + b2 sin2(θ)

we obtain
t

a
cos(θ) − s

a
sin(θ) = t

ca,b(θ)
a cos(θ)
ca,b(θ)

− t

a

a2 − c2
a,b(θ)

c2
a,b(θ)

cos(θ) − s

a
sin(θ)

= t

ca,b(θ)
cos(ϑ) − ca,b(θ)

ab

(
s+ t

a2 − b2

c2
a,b(θ)

sin(θ) cos(θ)
)

sin(ϑ)

and
t

b
sin(θ) + s

b
cos(θ) = t

ca,b(θ)
b sin(θ)
ca,b(θ)

− t

b

b2 − c2
a,b(θ)

c2
a,b(θ)

sin(θ) + s

b
cos(θ)

= t

ca,b(θ)
sin(ϑ) + ca,b(θ)

ab

(
s+ t

a2 − b2

c2
a,b(θ)

sin(θ) cos(θ)
)

cos(ϑ).

Therefore, by substituting

τ = t

ca,b(θ)
and σ = ca,b(θ)

ab

(
s+ t

a2 − b2

c2
a,b(θ)

sin(θ) cos(θ)
)
,

we have
dσ = ca,b(θ)

ab
ds

and can conclude that

Rfc(t, θ) = ab

ca,b(θ)

∫
R
f(τ cos(ϑ) − σ sin(ϑ), τ sin(ϑ) + σ cos(ϑ)) dσ = ab

ca,b(θ)
Rf(τ, ϑ)

= ab

ca,b(θ)
Rf

(
t

ca,b(θ)
, atan

( b
a

tan(θ)
))
,

as stated.

Finally, we come to the effect of rotating the argument in the target function f .

Proposition 2.17 (Rotation property of the Radon transform). Let f ≡ f(x, y) be a bivariate
function with Radon transform Rf ≡ Rf(t, θ). For a given rotation angle φ ∈ [−π, π) we define
the rotated function fφ via

fφ(x, y) = f(x cos(φ) + y sin(φ),−x sin(φ) + y cos(φ)) for (x, y) ∈ R2.

Then, the Radon transform Rfφ of fφ is given by

Rfφ(t, θ) = Rf(t, θ − φ) ∀ (t, θ) ∈ R × [0, π).
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Proof. For fixed (t, θ) ∈ R × [0, π), the definition of the Radon transform R yields

Rfφ(t, θ) =
∫
R
fφ(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) ds =

∫
R
f(x(s), y(s)) ds

with

x(s) = (t cos(θ) − s sin(θ)) cos(φ) + (t sin(θ) + s cos(θ)) sin(φ)
= t(cos(θ) cos(φ) + sin(θ) sin(φ)) − s(sin(θ) cos(φ) − cos(θ) sin(φ))
= t cos(θ − φ) − s sin(θ − φ)

and

y(s) = −(t cos(θ) − s sin(θ)) sin(φ) + (t sin(θ) + s cos(θ)) cos(φ)
= t(sin(θ) cos(φ) − cos(θ) sin(φ)) + s(sin(θ) sin(φ) + cos(θ) cos(φ))
= t sin(θ − φ) + s cos(θ − φ).

Consequently, we obtain

Rfφ(t, θ) =
∫
R
f(t cos(θ − φ) − s sin(θ − φ), t sin(θ − φ) + s cos(θ − φ)) ds

= Rf(t, θ − φ)

and the proof is complete.

We are now prepared to deal with more evolved examples. To this end, we first consider the
characteristic function of an ellipse with the following parameters:

a: major axis, h: x-coordinate of the center, φ: rotation angle,
b: minor axis, k: y-coordinate of the center.

Example 2.18. Let fe denote the characteristic function of an ellipse with parameters a, b > 0,
h, k ∈ R and φ ∈ [−π, π), i.e., for (x, y) ∈ R2 we have

fe(x, y) = χB1(0)
((x− h) cos(φ) + (y − k) sin(φ)

a
,
−(x− h) sin(φ) + (y − k) cos(φ)

b

)
.

For the sake of brevity, we define the functions

g(x, y) = χB1(0)
(x
a
,
y

b

)
for (x, y) ∈ R2

and
gφ(x, y) = g(x cos(φ) + y sin(φ),−x sin(φ) + y cos(φ)) for (x, y) ∈ R2

so that the function fe can be written as

fe(x, y) = gφ(x− h, y − k) ∀ (x, y) ∈ R2.

In Example 2.14 we have seen that the Radon transform of the characteristic function of the ball
BR(0) is given by

RχBR(0)(t, θ) = 2
√
R2 − t2 ⊔R(t) ∀ (t, θ) ∈ R × [0, π).

Consequently, for (t, θ) ∈ R× [0, π), applying the scaling property of the Radon transform yields

Rg(t, θ) = ab√
a2 cos2(θ) + b2 sin2(θ)

RχB1(0)

(
t√

a2 cos2(θ) + b2 sin2(θ)
, atan

( b
a

tan(θ)
))

= 2ab
a2 cos2(θ) + b2 sin2(θ)

√
a2 cos2(θ) + b2 sin2(θ) − t2 ⊔√a2 cos2(θ)+b2 sin2(θ)(t).



2.2 Definition and basic properties 15

(a) Phantom (b) Sinogram

Figure 2.2: The Shepp-Logan phantom and its sinogram.

Furthermore, by defining

ca,b,φ(θ) =
√
a2 cos2(θ − φ) + b2 sin2(θ − φ)

the rotation property of the Radon transform shows that

Rgφ(t, θ) = Rg(t, θ − φ) = 2ab
c2

a,b,φ(θ)
√
c2

a,b,φ(θ) − t2 ⊔ca,b,φ(θ)(t).

Consequently, by applying the shift property of the Radon transform and setting

th,k(t, θ) = t− h cos(θ) − k sin(θ),

for the Radon transform Rfe of fe follows that

Rfe(t, θ) = Rgφ(t− h cos(θ) − k sin(θ), θ) = 2ab
c2

a,b,φ(θ)
√
c2

a,b,φ(θ) − t2h,k(t, θ) ⊔ca,b,φ(θ)(th,k(t, θ)).

Based on Example 2.18 we finally consider two so called mathematical phantoms, i.e., test
cases for numerical simulations, where the Radon transform can be computed analytically. The
first is the popular Shepp-Logan phantom, which was introduced in [17] and is the superposition
of ten ellipses to sketch a cross section of the human head, see Figure 2.2(a). Its sinogram, i.e.,
its Radon transform in the rectangular coordinate system R×[0, π), is displayed in Figure 2.2(b).

Another mathematical phantom is displayed in Figure 2.3(a). It consists of seven ellipses
and sketches a cross section of the human thorax. Its sinogram is displayed in Figure 2.3(b).

(a) Phantom (b) Sinogram

Figure 2.3: The thorax-shaped phantom and its sinogram.
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2.3 Back projection
We want to recover the function f ≡ f(x, y) from the values Rf(t, θ) with t ∈ R and θ ∈ [0, π).
First, we observe that each fixed point (x0, y0) ∈ R2 lies on infinitely many different lines ℓt,θ.
But for a fixed angle θ ∈ [0, π) there exists exactly one t ∈ R for which ℓt,θ passes through the
point (x0, y0). Indeed, for suitable s ∈ R we have the representation

x0 = t cos(θ) − s sin(θ) and y0 = t sin(θ) + s cos(θ)

if and only if t = x0 cos(θ) + y0 sin(θ), see Remark 2.3. Consequently, the lines passing through
(x0, y0) are of the form

ℓx0 cos(θ)+y0 sin(θ),θ for θ ∈ [0, π).
The first naive idea is now the following: To recover f(x0, y0), we compute the average value of
the line integrals

Rf(x0 cos(θ) + y0 sin(θ), θ) for θ ∈ [0, π)
over all lines passing through (x0, y0). This operation is called back projection.
Definition 2.19 (Back projection). Let g ∈ L1(R × [0, π)) be a bivariate function in polar
coordinates. Then, the back projection Bg of g at the point (x, y) ∈ R2 is defined as

Bg(x, y) = 1
π

∫ π

0
g(x cos(θ) + y sin(θ), θ) dθ.

The following proposition shows that the back projection Bg of a function g ∈ L1(R× [0, π))
is defined almost everywhere and locally integrable on R2.
Proposition 2.20 (Mapping property of the back projection). For g ∈ L1(R× [0, π)), the back
projection Bg is defined almost everywhere on R2 and satisfies Bg ∈ L1

loc(R2).
Proof. Let g ∈ L1(R × [0, π)). We define the auxiliary function H : R2 × [0, π) → R × [0, π) as

H(x, y, θ) = (x cos(θ) + y sin(θ), θ) for (x, y, θ) ∈ R2 × [0, π).

Then, H is continuous on R2 × [0, π) and we have

Bg(x, y) = 1
π

∫ π

0
g(H(x, y, θ)) dθ ∀ (x, y) ∈ R2.

Now, let K ⊂ R2 be an arbitrary compact subset of R2. We then obtain

∥Bg∥L1(K) =
∫

K
|Bg(x, y)| d(x, y) =

∫
K

∣∣∣∣ 1π
∫ π

0
g(H(x, y, θ)) dθ

∣∣∣∣ d(x, y)

= 1
π

∫
R

∫
R

∣∣∣∣ ∫ π

0
g(H(x, y, θ)) dθ

∣∣∣∣χK(x, y) dx dy

≤ 1
π

∫
R

∫
R

(∫ π

0
|g(H(x, y, θ))| dθ

)
χK(x, y) dx dy,

where χK denotes the characteristic function of K. By applying Fubini’s theorem for non-
negative functions and integration by substitution for real-valued functions with

x = t cos(θ) − s sin(θ) and y = t sin(θ) + s cos(θ),

i.e., dx dy = dt ds and

t = x cos(θ) + y sin(θ) and s = −x sin(θ) + y cos(θ),

we obtain

∥Bg∥L1(K) ≤ 1
π

∫ π

0

∫
R

∫
R

|g(x cos(θ) + y sin(θ), θ)|χK(x, y) dx dy dθ

= 1
π

∫ π

0

∫
R

∫
R

|g(t, θ)|χK(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) dt ds dθ.
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Using again Fubini’s theorem, the definition of the Radon transform R yields

∥Bg∥L1(K) ≤ 1
π

∫ π

0

∫
R

|g(t, θ)|
(∫

R
χK(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) ds

)
dt dθ

= 1
π

∫ π

0

∫
R

|g(t, θ)| RχK(t, θ) dtdθ ≤ 1
π

diam(K) ∥g∥L1(R×[0,π)) < ∞.

Consequently, we have Bg ∈ L1(K) for all compact subsets K ⊂ R2. In particular, this shows
that the back projection Bg of g ∈ L1(R× [0, π)) is defined almost everywhere on R2 and satisfies

Bg ∈ L1
loc(R2).

Note that the back projection Bg of an essentially bounded function g ∈ L∞(R × [0, π)) is
also defined almost everywhere and essentially bounded on R2. Moreover, the back projection
is continuous as a mapping

B : L∞(R × [0, π)) → L∞(R2),

where for g ∈ L∞(R × [0, π))

∥Bg∥L∞(R2) ≤ ∥g∥L∞(R×[0,π)).

We continue with some basic properties of the back projection operator B.

Observation 2.21. The back projection operator B maps a bivariate function g ≡ g(t, θ) in
polar coordinates onto a bivariate function Bg ≡ Bg(x, y) in Cartesian coordinates.

As the Radon transform R, the back projection operator B is a positive linear operator.

Proposition 2.22 (Linearity of the back projection). The back projection B is a positive linear
integral operator, i.e., for all α, β ∈ R and g, h ∈ L1(R × [0, π)) we have

B(αg + βh) = αBg + β Bh

and
g ≥ 0 =⇒ Bg ≥ 0.

Proof. The statement follows from the positivity and linearity of the integral.

However, an inspection of Figure 2.4 shows that the back projection is not the inverse of the
Radon transform. Instead, we have to apply a filtered back projection, as we will see later.

Observation 2.23. The back projection B is not the inverse of the Radon transform R.

(a) Phantom (b) Back projection

Figure 2.4: Back projection of the Shepp-Logan phantom.



18 2 The Radon transform

We close this paragraph on the back projection operator by stating the following useful
relation between the convolution product, the back projection and the Radon transform. Recall
that the convolution product of two bivariate functions f ≡ f(x, y), g ≡ g(x, y) ∈ L1(R2) in
Cartesian coordinates is given by

(f ∗ g)(x, y) =
∫
R

∫
R
f(X,Y ) g(x−X, y − Y ) dX dY for (x, y) ∈ R2.

Further, we define the convolution product of two bivariate functions h ≡ h(t, θ), k ≡ k(t, θ) in
polar coordinates satisfying h(·, θ), k(·, θ) ∈ L1(R) for all θ ∈ [0, π) as

(h ∗ k)(t, θ) =
∫
R
h(S, θ) k(t− S, θ) dS for (t, θ) ∈ R × [0, π).

The result now reads as follows.

Theorem 2.24. Let f ≡ f(x, y) ∈ L1(R2) be a bivariate function in Cartesian coordinates and
let g ≡ g(t, θ) ∈ L∞(R × [0, π)) be a function in polar coordinates. Then, we have

Bg ∗ f = B(g ∗ Rf). (2.5)

Proof. First of all, we note that for f ∈ L1(R2) and g ∈ L∞(R× [0, π)) both expressions in (2.5)
are well-defined as functions in L∞(R2). Indeed, for g ∈ L∞(R × [0, π)) its back projection Bg
is essentially bounded on R2, i.e., Bg ∈ L∞(R2), and, therefore, Young’s inequality shows that

Bg ∗ f ∈ L∞(R2).

On the other hand, for f ∈ L1(R2) we have Rf(·, θ) ∈ L1(R) for all θ ∈ [0, π) according to
Proposition 2.11 with

∥Rf(·, θ)∥L1(R) ≤ ∥f∥L1(R2) ∀ θ ∈ [0, π).
Consequently, the convolution product of Rf and g is in L∞(R × [0, π)) and we also obtain

B(g ∗ Rf) ∈ L∞(R2).

Now, for (X,Y ) ∈ R2 the definitions of the back projection and the convolution product give

(Bg ∗ f)(X,Y ) =
∫
R

∫
R

Bg(X − x, Y − y) f(x, y) dx dy,

where
Bg(X − x, Y − y) = 1

π

∫ π

0
g((X − x) cos(θ) + (Y − y) sin(θ), θ) dθ.

By substituting

t = x cos(θ) + y sin(θ) and s = −x sin(θ) + y cos(θ),

we get dx dy = dsdt and, therefore, with

Rf(t, θ) =
∫
R
f(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) ds

we can conclude that

(Bg ∗ f)(X,Y ) = 1
π

∫ π

0

∫
R
g(X cos(θ) + Y sin(θ) − t, θ) Rf(t, θ) dtdθ

= 1
π

∫ π

0
(g ∗ Rf)(X cos(θ) + Y sin(θ), θ) dθ

= B(g ∗ Rf)(X,Y ),

as stated.



Chapter 3

Inversion of the Radon transform

This chapter deals with the inversion of the Radon transform. To this end, we first state the
Fourier slice theorem resulting in the classical filtered back projection formula, which yields an
analytical inversion formula and is the basis for one of the most commonly used reconstruction
algorithms in computerized tomography. The inversion, however, is numerically unstable and
we study the degree of ill-posedness of the CT reconstruction problem to explain this fact.

3.1 Fourier slice theorem
One of the most important properties of the Radon transform is given by the classical Fourier
slice theorem (FST), also known as central slice theorem, which relates the Fourier transform of
the Radon transform to the Fourier transform of the function to be reconstructed.

Let us first recall that the Fourier transform Ff of a bivariate function f ≡ f(x, y) ∈ L1(R2)
in Cartesian coordinates is given by

Ff(X,Y ) =
∫
R

∫
R
f(x, y) e−i(xX+yY ) dx dy for (X,Y ) ∈ R2.

For a bivariate function h ≡ h(t, θ) in polar coordinates satisfying h(·, θ) ∈ L1(R) for all θ ∈ [0, π)
we define the Fourier transform Fh as the univariate Fourier transform acting only on the radial
variable t, i.e.,

Fh(S, θ) =
∫
R
h(t, θ) e−iSt dt for (S, θ) ∈ R × [0, π).

Now, the Fourier slice theorem reads as follows.
Theorem 3.1 (Fourier slice theorem). For f ∈ L1(R2) we have

F(Rf)(S, θ) = Ff(S cos(θ), S sin(θ)) ∀ (S, θ) ∈ R × [0, π).

Proof. For (S, θ) ∈ R × [0, π), the definition of the two-dimensional Fourier transform yields

Ff(S cos(θ), S sin(θ)) =
∫
R

∫
R
f(x, y) e−iS(x cos(θ)+y sin(θ)) dx dy.

Applying the transformation

x = t cos(θ) − s sin(θ) and y = t sin(θ) + s cos(θ),

i.e.,
t = x cos(θ) + y sin(θ) and s = −x sin(θ) + y cos(θ),

again gives dx dy = dt ds and, thus, it follows that

Ff(S cos(θ), S sin(θ)) =
∫
R

∫
R
f(t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) e−iSt dt ds = F(Rf)(S, θ)

by Fubini’s theorem and the definition of the Radon transform R.
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The importance of the Fourier slice theorem lies in the fact that it links together the Radon
transform of a function and its Fourier transform. This connection can be used to derive prop-
erties of the Radon transform from those properties which are known for the Fourier transform.
In particular, the Fourier slice theorem shows the injectivity of the Radon transform on the
domain L1(R2). Indeed, if Rf vanished on R × [0, π), then Ff vanished on R2, which implies
that f is zero due to the injectivity of the Fourier transform on L1(R2).

Corollary 3.2 (Injectivity of the Radon transform). For f ∈ L1(R2) we have

Rf = 0 =⇒ f = 0,

i.e., the Radon transform R is injective on L1(R2).

Moreover, Theorem 3.1 immediately provides a scheme for reconstructing a function from
the knowledge of its Radon transform. Assuming Rf(t, θ) to be known for all (t, θ) ∈ R× [0, π),
we can gain knowledge about the two-dimensional Fourier transform of f by computing the one-
dimensional Fourier transform of Rf . Subsequent application of the inverse two-dimensional
Fourier transform would yield the function f we want to reconstruct. We remark that such
reconstruction procedures are known as Fourier reconstruction methods, cf. [12], [13].

3.2 Filtered back projection formula
Based on the Fourier slice Theorem 3.1, we are now prepared to prove an inversion formula for
the Radon transform, which is given by the classical filtered back projection (FBP) formula.

Theorem 3.3 (Filtered back projection formula). For f ∈ L1(R2) ∩ C (R2) with Ff ∈ L1(R2)
the filtered back projection formula

f(x, y) = 1
2 B

(
F−1[|S|F(Rf)(S, θ)]

)
(x, y) (3.1)

holds for all (x, y) ∈ R2.

We remark that the FBP formula is also valid under weaker assumptions on the function f .
For the purpose of this course, however, the presented version is sufficient.

Proof. Let f ∈ L1(R2) ∩ C (R2) with Ff ∈ L1(R2) and let (x, y) ∈ R2 be fixed. Applying the
two-dimensional Fourier inversion formula to f yields the identity

f(x, y) = F−1(Ff)(x, y) = 1
4π2

∫
R

∫
R

Ff(X,Y ) ei(xX+yY ) dX dY.

By changing the variables (X,Y ) ∈ R2 from Cartesian coordinates to (S, θ) ∈ R× [0, π) in polar
coordinates, i.e.,

X = S cos(θ) and Y = S sin(θ),
we get dX dY = |S| dS dθ. Thus, with the Fourier slice Theorem 3.1 follows that

f(x, y) = 1
4π2

∫ π

0

∫
R

Ff(S cos(θ), S sin(θ)) eiS(x cos(θ)+y sin(θ)) |S| dS dθ

FST= 1
4π2

∫ π

0

∫
R

F(Rf)(S, θ) eiS(x cos(θ)+y sin(θ)) |S| dS dθ

= 1
2π

∫ π

0
F−1[|S| F(Rf)(S, θ)](x cos(θ) + y sin(θ), θ) dθ

= 1
2 B

(
F−1[|S|F(Rf)(S, θ)]

)
(x, y)

due to the definition of the back projection.
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(a) Radon data (b) Noiseless reconstruction (c) Noisy data (d) Noisy reconstruction

Figure 3.1: Noise amplification of the filtered back projection formula.

We remark that without the factor |S| in (3.1), the Fourier transform and its inverse would
cancel out and the FBP formula world reduce to simply applying the back projection operator
B to the Radon data Rf . However, as we have seen in Observation 2.23, this is not sufficient
for the exact recovery of the function f .
Remark 3.4. The FBP formula (3.1) reveals that multiplying the Fourier transform of Rf
with |S| and applying the inverse Fourier transform is essential before back projecting the Radon
data. In the language of signal processing, we say that the Radon data Rf is filtered by the
multiplication with the (radial) filter |S| in Fourier domain, which also explains the expression
filtered back projection.

With Theorem 3.3 the stated CT reconstruction Problem 2.8 is solved analytically. In
practice, however, the application of the FBP formula (3.1) causes severe numerical problems.
Observation 3.5 (FBP is unstable). By the application of the filter |S| to the Fourier transform
F(Rf) in (3.1), especially the high frequency components in Rf are amplified by the magnitude
of |S|. Since noise mainly consists of high frequencies, this shows that the filtered back projection
formula is highly sensitive with respect to noise and, thus, numerically unstable. In practice, a
direct application of the FBP formula would lead to undesired corruptions in the reconstruction.

To illustrate this observation we consider the reconstruction of the Shepp-Logan phantom
from noisy Radon data, see Figure 3.1. The noiseless Radon data is shown in Figure 3.1(a) and
the FBP reconstruction from this data can be seen in Figure 3.1(b). In Figure 3.1(c) 10% white
Gaussian noise is added to the Radon data and this noisy data is used for the FBP reconstruction
in Figure 3.1(d). As expected, we clearly observe a severe amplification of the noise.

The noise sensibility of the inversion formula can be explained by analysing the ill-posedness
of the CT reconstruction Problem 2.8. Before that, we first want to pass the following remark.
Remark 3.6. The filtered back projection formula assumes the Radon data Rf(t, θ) to be avail-
able for all straight lines ℓt,θ in the plane. But in practice, only a finite number of X-ray samples
are taken and, consequently, we have to recover the function f from a finite set of Radon data{

Rf(tj , θj)
∣∣ j = 1, . . . ,M

}
for some M ∈ N.

The reconstruction from discrete Radon data will be discussed in later chapters.

3.3 Ill-posedness
In the previous paragraph we have presented an inversion formula for the Radon transform,
given by the filtered back projection formula. For the application of this reconstruction formula
to real data, we have to assume that perfect Radon data are given. However, this is not a
realistic scenario, because in practice the data is always corrupted by noise.
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Therefore, it is important to know how small perturbations in the measurement data are
propagated through the reconstruction process. In particular, we have to analyse whether the
inversion of the Radon transform is continuous, i.e., whether small measurement errors only
lead to small errors in the reconstruction. This leads us to Hadamard’s classical definition of
well-posed problems and the notion of ill-posedness.

For a comprehensive treatment of ill-posed problems and the theory of inverse problems and
their regularization, we refer the reader to the monograph [5].

Definition 3.7 (Well-posedness). Let A : X → Y be a mapping between topological spaces X
and Y. The problem Ax = y is called well-posed in the sense of Hadamard if the following three
conditions are satisfies:

(i) Existence: For every y ∈ Y there exists an x ∈ X such that Ax = y.

(ii) Uniqueness: For every y ∈ Y the solution x ∈ X of Ax = y is uniquely determined.

(iii) Stability: The inverse mapping A−1 : Y → X is continuous, i.e., the solution x ∈ X
depends continuously on the data y ∈ Y.

If at least one of the above conditions is violated, the problem is called ill-posed.

A standard method to classify the degree of ill-posedness of an operator A is based on the
decay behaviour of its singular values, see [5, Section 2.2]. If A is defined on L2-spaces, another
classification of ill-posedness can be defined in terms of Sobolev spaces Hα.

Definition 3.8 (Degree of ill-posedness). Let A : X → Y be an operator between L2-spaces X
and Y. The problem Ax = y is called ill-posed of degree α > 0 if, for some C1, C2 > 0,

C1 ∥x∥L2 ≤ ∥Ax∥Hα ≤ C2 ∥x∥L2 .

We now state a continuity result for the Radon transform on Sobolev spaces of fractional
order, which implies that the CT reconstruction Problem 2.8 is ill-posed of degree 1

2 .
Let us first recall the definitions of the involved Sobolev spaces. For functions f ≡ f(x, y)

in Cartesian coordinates (x, y) ∈ R2 the Sobolev space Hα(R2) of order α ∈ R, defined as

Hα(R2) =
{
f ∈ S ′(R2)

∣∣ ∥f∥Hα(R2) < ∞
}
,

is equipped with the norm

∥f∥Hα(R2) =
(∫

R

∫
R

(1 +X2 + Y 2)α |Ff(X,Y )|2 dX dY
)1/2

.

Further, for an open subset Ω ⊂ R2 the space Hα
0 (Ω) consists of those Sobolev functions with

support in Ω, i.e.,
Hα

0 (Ω) =
{
f ∈ Hα(R2)

∣∣ supp(f) ⊂ Ω
}
.

For functions g ≡ g(t, θ) in polar coordinates (t, θ) ∈ R × [0, π), we define the Sobolev space
Hα(R× [0, π)), α ∈ R, as the space of all functions g with g(·, θ) ∈ Hα(R) for almost all θ ∈ [0, π)
and

∥g∥Hα(R×[0,π)) =
(∫ π

0

∫
R

(1 + S2)α |Fg(S, θ)|2 dS dθ
)1/2

< ∞.

Then, we obtain the following continuity result for the Radon transform. Here, it is essential
to assume that we deal with functions with compact support.

Theorem 3.9. Let Ω ⊂ R2 be an open and bounded set and let f ∈ L1(R2) ∩ Hα
0 (Ω) with α ∈ R.

Then, we have Rf ∈ Hα+1/2(R × [0, π)) and there exists a constant Cα > 1 such that

∥f∥Hα(R2) ≤ ∥Rf∥Hα+1/2(R×[0,π)) ≤ Cα ∥f∥Hα(R2).
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Proof. Since f ∈ L1(R2), the Fourier slice Theorem 3.1 gives

F(Rf)(S, θ) = Ff(S cos(θ), S sin(θ)) ∀ (S, θ) ∈ R × [0, π)

and we obtain

∥Rf∥2
Hα+1/2(R×[0,π)) =

∫ π

0

∫
R

(1 + S2)α+ 1
2 |Ff(S cos(θ), S sin(θ))|2 dS dθ.

Using the estimate
(1 + S2)

1
2 ≥ |S| ∀S ∈ R,

this implies that

∥Rf∥2
Hα+1/2(R×[0,π)) ≥

∫ π

0

∫
R

(1 + S2)α |Ff(S cos(θ), S sin(θ))|2 |S| dS dθ.

By applying the transformation

X = S cos(θ) and Y = S sin(θ),

we get dX dY = |S| dS dθ and with S2 = X2 + Y 2 follows that

∥Rf∥2
Hα+1/2(R×[0,π)) ≥

∫
R

∫
R

(1 +X2 + Y 2)α |Ff(X,Y )|2 dX dY = ∥f∥2
Hα(R2),

which proves the first inequality. On the other hand, we have

∥Rf∥2
Hα+1/2(R×[0,π)) =

∫ π

0

∫
R

(1 + S2)α+ 1
2 |Ff(S cos(θ), S sin(θ))|2 dS dθ

=
∫
R

∫
R

(1 +X2 + Y 2)α+ 1
2 (X2 + Y 2)− 1

2 |Ff(X,Y )|2 dX dY,

where we used the transformation from above and

|S| =
√
X2 + Y 2.

We now split the above representation of the Hα+1/2-norm of Rf into the sum of two integrals,

∥Rf∥2
Hα+1/2(R×[0,π)) = I1 + I2,

where we let

I1 =
∫

X2+Y 2≤1
(1 +X2 + Y 2)α+ 1

2 (X2 + Y 2)− 1
2 |Ff(X,Y )|2 d(X,Y )

and
I2 =

∫
X2+Y 2>1

(1 +X2 + Y 2)α+ 1
2 (X2 + Y 2)− 1

2 |Ff(X,Y )|2 d(X,Y ).

In what follows, we estimate the integrals I1 and I2 separately with respect to the Hα-norm of f .
To bound the second integral I2, we use the estimate

X2 + Y 2 ≥ 1
2 (1 +X2 + Y 2) ∀X2 + Y 2 ≥ 1.

With this, I2 can be estimated from above by

I2 ≤
√

2
∫

X2+Y 2>1
(1 +X2 + Y 2)α+ 1

2 (1 +X2 + Y 2)− 1
2 |Ff(X,Y )|2 d(X,Y )

=
√

2
∫

X2+Y 2>1
(1 +X2 + Y 2)α |Ff(X,Y )|2 d(X,Y ) ≤

√
2∥f∥2

Hα(R2).
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For the first integral I1, we use the fact that Ff ∈ C0(R2) for f ∈ L1(R2) and get

I1 ≤
∫

X2+Y 2≤1
(1 +X2 + Y 2)α+ 1

2 (X2 + Y 2)− 1
2 d(X,Y ) sup

X2+Y 2≤1
|Ff(X,Y )|2

≤ C1(α) sup
X2+Y 2≤1

|Ff(X,Y )|2

for some constant 0 < C1(α) < ∞. In order to estimate the supremum, we choose an even
function χ ∈ C ∞

c (R2) which is 1 on Ω and, for fixed (X,Y ) ∈ R2, we define the function

χ(X,Y )(x, y) = e−i(xX+yY ) χ(x, y) for (x, y) ∈ R2.

Then, its inverse Fourier transform F−1χ(X,Y ) exists and is given by

F−1χ(X,Y )(x, y) = F−1χ(x−X, y − Y ) ∀ (x, y) ∈ R2.

Applying Parseval’s identity yields

|Ff(X,Y )|2 =
∣∣∣∣ ∫

R

∫
R
f(x, y) e−i(xX+yY ) dx dy

∣∣∣∣2 =
∣∣∣∣ ∫

R

∫
R
χ(X,Y )(x, y) f(x, y) dx dy

∣∣∣∣2
=
∣∣∣∣ ∫

R

∫
R

F−1χ(X,Y )(x, y) Ff(x, y) dx dy
∣∣∣∣2

=
∣∣∣∣ ∫

R

∫
R

F−1χ(X,Y )(x, y) (1 + x2 + y2)− α
2 (1 + x2 + y2)

α
2 Ff(x, y) dx dy

∣∣∣∣2
and with the Cauchy-Schwarz inequality follows that

|Ff(X,Y )|2 ≤
(∫

R

∫
R

(1 + x2 + y2)−α |F−1χ(X,Y )(x, y)|2 dx dy
)

∥f∥2
Hα(R2),

since χ ∈ C ∞
c (R2) and f ∈ Hα

0 (Ω), i.e., (1 + x2 + y2) α
2 |Ff | ∈ L2(R2). We further have

F−1χ(X,Y )(x, y) = 1
4π2 Fχ(X,Y )(−x,−y) ∀ (x, y) ∈ R2,

which implies that

|Ff(X,Y )|2 ≤ 1
16π4 ∥χ(X,Y )∥2

H−α(R2) ∥f∥2
Hα(R2) ∀ (X,Y ) ∈ R2.

The H−α-norm of χ(X,Y ) is a continuous function of (X,Y ) and, consequently, there exists a
constant C2(α) > 0 such that

sup
X2+Y 2≤1

1
16π4 ∥χ(X,Y )∥2

H−α(R2) ≤ C2(α).

Combining the estimates yields

∥Rf∥2
Hα+1/2(R×[0,π)) ≤

(√
2 + C1(α)C2(α)

)
∥f∥2

Hα(R2) = C2
α ∥f∥2

Hα(R2)

and the second inequality is also satisfied. In particular, we have Rf ∈ Hα+1/2(R × [0, π)).

Remark 3.10. Theorem 3.9 shows that the Radon transform R admits an inverse and that this
inverse is continuous as an operator from Hα+1/2(R × [0, π)) into Hα

0 (Ω). Here, the order of
the latter Sobolev space is optimal in the sense that the result is wrong for any larger index. In
particular, if α is chosen such that Hα+1/2(R × [0, π)) is simply the L2-space, i.e., α = −1

2 , then
Hα

0 (Ω) is a Sobolev space of negative order, whose norm is weaker than the L2-norm on L2(Ω).
This shows that R−1 is not continuous in an L2-setting, i.e., the CT reconstruction Problem 2.8
is ill-posed in the sense of Hadamard.
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We remark that choosing α = 0 in Theorem 3.9 shows that the problem of reconstructing a
bivariate function from its Radon data is ill-posed of degree 1

2 in the sense of Definition 3.8. In
particular, the Radon transform R smoothes by an order of 1

2 in the Sobolev scale. Since the
inversion has to reverse the smoothing, the reconstruction process is unstable and regularization
strategies have to be applied to stabilize the inversion.

For this purpose, we will follow a standard approach and replace the filter |S| in the filtered
back projection formula (3.1) by a so called low-pass filter FL(S) of finite bandwidth L and
with a compactly supported window function. For other approaches we refer to the standard
literature on inverse problems and regularization, see, for example, [5].

3.4 Overview of inversion strategies
To close this chapter we collect different strategies for the inversion of the Radon transform,
which all suffer from the ill-posedness of the CT reconstruction problem.

Direct Fourier reconstruction

The direct Fourier reconstruction method is based on the Fourier slice Theorem 3.1, i.e.,
F(Rf)(S, θ) = Ff(S cos(θ), S sin(θ)) ∀ (S, θ) ∈ R × [0, π),

and consists of the following steps:
(1) For each angle θ ∈ [0, π), compute the 1D Fourier transform of the sinogram Rf

p̂θ(S) = F(Rf)(S, θ) for S ∈ R.

(2) Create polar representation of the Fourier transform of the target function f via
f̂(S cos(θ), S sin(θ)) = p̂θ(S) for (S, θ) ∈ R × [0, π).

(3) Convert from polar coordinates to Cartesian coordinates,
f̂(S cos(θ), S sin(θ)) −→ f̂(X,Y ).

(4) Compute 2D inverse Fourier transform to reconstruct f via
f(x, y) = F−1f̂(x, y) for (x, y) ∈ R2.

Filtered back projection

The exact filtered back projection method is based on the filtered back projection formula (3.1),
i.e.,

f(x, y) = 1
2 B

(
F−1[|S|F(Rf)(S, θ)]

)
(x, y) ∀ (x, y) ∈ R2,

and consists of the following steps:
(1) For each angle θ ∈ [0, π), compute the 1D Fourier transform of the sinogram Rf

p̂θ(S) = F(Rf)(S, θ) for S ∈ R.

(2) Multiply p̂θ by the filter |S| to obtain
ĥθ(S) = |S| p̂θ(S) for S ∈ R.

(3) Apply 1D inverse Fourier transform to obtain the filtered sinogram
h(S, θ) = F−1ĥθ(S) for (S, θ) ∈ R × [0, π).

(4) Back project the filtered sinogram to reconstruct f via

f(x, y) = 1
2 Bh(x, y) for (x, y) ∈ R2.
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Filtering the laminogram

Instead of first filtering the sinogram and then back projecting the result, one can also first back
project the sinogram, leading to the so called laminogram, and then filter the laminogram. This
approach is called filtering the laminogram and involves the Riesz potential Λαf of f ∈ S(R2),
defined as

Λαf = F−1(∥ · ∥−α
R2 Ff

)
for α < 2.

Theorem 3.11. For f ∈ S(R2) we have the inversion formula

f(x, y) = 1
2 Λ−1(B(Rf)

)
(x, y) ∀ (x, y) ∈ R2.

Proof. Let (x, y) ∈ R2 be fixed. Since for f ∈ S(R2) we have Λf ∈ L1(R2) and F(Λf) ∈ L1(R2),
applying the two-dimensional Fourier inversion formula to Λf yields the identity

Λf(x, y) = F−1(FΛf)(x, y) = 1
4π2

∫
R

∫
R

∥(X,Y )∥−1
R2 Ff(X,Y ) ei(xX+yY ) dX dY.

By changing the variables (X,Y ) ∈ R2 from Cartesian coordinates to (S, θ) ∈ R× [0, π) in polar
coordinates, i.e.,

X = S cos(θ) and Y = S sin(θ),
we get dX dY = |S| dS dθ. Thus, with the Fourier slice Theorem 3.1 follows that

Λf(x, y) = 1
4π2

∫ π

0

∫
R

|S|−1 Ff(S cos(θ), S sin(θ)) eiS(x cos(θ)+y sin(θ)) |S| dS dθ

FST= 1
4π2

∫ π

0

∫
R

F(Rf)(S, θ) eiS(x cos(θ)+y sin(θ)) dS dθ

= 1
2π

∫ π

0
F−1[F(Rf)(S, θ)](x cos(θ) + y sin(θ), θ) dθ = 1

2 B
(
Rf
)
(x, y)

due to the one-dimensional Fourier inversion formula and the definition of the back projection.
Consequently, for the target function f follows that

f = F−1(Ff) = F−1(∥ · ∥R2 ∥ · ∥−1
R2 Ff

)
= F−1(∥ · ∥R2 F(Λf)

)
= Λ−1(Λf) = 1

2 Λ−1(B(Rf)
)
,

as stated.

The filtering the laminogram method is now based on the inversion formula

f(x, y) = 1
2F−1(∥(X,Y )∥R2 F(B(Rf))(X,Y )

)
(x, y) ∀ (x, y) ∈ R2

and consists of the following steps:

(1) Back project the sinogram Rf to obtain the laminogram

fb(x, y) = B
(
Rf

)
(x, y) for (x, y) ∈ R2.

(2) Compute the 2D Fourier transform of the laminogram to obtain

f̂b(X,Y ) = Ffb(X,Y ) for (X,Y ) ∈ R2.

(3) Multiply f̂b by the filter ∥(X,Y )∥R2 to obtain

Ĥ(X,Y ) = ∥(X,Y )∥R2 f̂b(X,Y ) for (X,Y ) ∈ R2.

(4) Apply 2D inverse Fourier transform to reconstruct f via

f(x, y) = 1
2 F−1Ĥ(x, y) for (x, y) ∈ R2.



Chapter 4

Method of filtered back projection

We have seen that the basic reconstruction problem in CT can be formulated as the problem of
reconstructing a bivariate function f ∈ L1(R2) from given Radon data

{Rf(t, θ) | t ∈ R, θ ∈ [0, π)} .

Based on the FBP formula (3.1) and under suitable assumptions on f we found the reconstruction
formula

f(x, y) = 1
2 B

(
F−1[|S|F(Rf)(S, θ)]

)
(x, y) ∀ (x, y) ∈ R2,

which is highly sensitive with respect to noise and, thus, cannot be used in practice.
In this chapter we explain how the above FBP formula can be stabilized by incorporating a

low-pass filter FL : R → R of the form

FL(S) = |S|W (S/L) for S ∈ R

with bandwidth L > 0 and an even window W ∈ L∞(R) of compact support supp(W ) ⊆ [−1, 1].
This standard approach reduces the noise sensitivity of the reconstruction scheme, but leads to
an approximate FBP reconstruction, which we denote by fL and can be rewritten as

fL = 1
2 B

(
F−1FL ∗ Rf

)
. (4.1)

An application of (4.1) will be called method of filtered back projection or, in short, FBP method.

4.1 Approximate reconstruction formula

Based on the FBP formula (3.1) we now define the approximate FBP reconstruction fL by
incorporating a suitable low-pass filter FL.

Definition 4.1 (Low-pass filter). Let L > 0 and let W ∈ L∞(R) be even and compactly supported
with

supp(W ) ⊆ [−1, 1].

A function FL : R → R of the form

FL(S) = |S|W (S/L) for S ∈ R

is called low-pass filter for the stabilization of the FBP formula (3.1), where L denotes its
bandwidth and W is its window function. For the sake of brevity, we set F ≡ F1 so that

FL(S) = LF (S/L) ∀S ∈ R.
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In the following, let FL be a low-pass filter with bandwidth L and window W . Because of
the compact support of W we have FL ∈ Lp(R) for all 1 ≤ p ≤ ∞ and

supp(FL) ⊆ [−L,L].

Now, let the target function f satisfy f ∈ L1(R2). Based on the FBP formula (3.1) we define
the approximate FBP reconstruction fL via

fL(x, y) = 1
2 B

(
F−1[FL(S)F(Rf)(S, θ)]

)
(x, y) for (x, y) ∈ R2. (4.2)

We will see that (4.2) defines a band-limited approximation of the target function f .

Definition 4.2 (Band-limited function). A function f whose Fourier transform Ff has compact
support is called a band-limited function.

In the first theorem we show that fL is defined almost everywhere on R2 and can be simplified
as

fL = 1
2 B

(
κL ∗ Rf

)
,

where we define the band-limited function κL : R × [0, π) → R via

κL(S, θ) = F−1FL(S) for (S, θ) ∈ R × [0, π).

Note that κL is well-defined on R × [0, π) and satisfies κL ∈ L∞(R × [0, π)), since FL ∈ L1(R).
Furthermore, the definition of κL is independent of the angle θ ∈ [0, π) and only depends on the
radial variable S ∈ R. For the sake of brevity, we set κ ≡ κ1 and the scaling property of the
Fourier transform gives

κL(S, θ) = L2 κ(LS, θ) ∀ (S, θ) ∈ R × [0, π). (4.3)

Theorem 4.3 (Simplification of fL). Let f ∈ L1(R2) and let FL be be a low-pass filter such that
κ ∈ L1(R × [0, π)). Then, the approximate FBP reconstruction fL, given by

fL(x, y) = 1
2 B

(
F−1[FL(S)F(Rf)(S, θ)]

)
(x, y) for (x, y) ∈ R2,

is defined almost everywhere on R2 and satisfies fL ∈ L∞(R2). Furthermore, fL can be rewritten
as

fL = 1
2 B

(
κL ∗ Rf

)
. (4.4)

Proof. Since FL ∈ L1(R) and κL ∈ L1(R × [0, π)) by assumption, the Fourier inversion theorem
gives

FκL(S, θ) = FL(S) ∀ (S, θ) ∈ R × [0, π)

and with the Fourier convolution theorem follows that

FL(S)F(Rf)(S, θ) = F(κL ∗ Rf)(S, θ) ∀ (S, θ) ∈ R × [0, π),

where we use Rf ∈ L1(R × [0, π)) with

∥Rf(·, θ)∥L1(R) ≤ ∥f∥L1(R2) ∀ θ ∈ [0, π).

Applying again the Fourier inversion theorem yields the desired representation

fL = 1
2 B

(
κL ∗ Rf

)
∈ L∞(R2),

since (κL ∗ Rf) ∈ L∞(R × [0, π)). In particular, fL is defined almost everywhere on R2.
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We can further simplify the representation (4.4) of the approximate FBP reconstruction fL

by applying the back projection convolution formula (2.5), i.e.,

B(g ∗ Rf) = Bg ∗ f.

To this end, we define the convolution kernel KL : R2 → R by

KL(x, y) = 1
2 BκL(x, y) for (x, y) ∈ R2.

Since κL ∈ L∞(R × [0, π)), the convolution kernel KL is defined almost everywhere on R2 and
satisfies KL ∈ L∞(R2). For the sake of brevity, we set K ≡ K1 and with (4.3) follows that

KL(x, y) = L2K(Lx,Ly) ∀ (x, y) ∈ R2. (4.5)

Corollary 4.4. Let f ∈ L1(R2) and let FL be be a low-pass filter such that κ ∈ L1(R × [0, π)).
Then, the approximate FBP reconstruction fL can be rewritten as

fL = f ∗KL. (4.6)

The representation (4.6) allows us to show that fL is a band-limited function. To this end,
we first determine the Fourier transform of the convolution kernel KL, which in turn requires
the definition of the bivariate window function WL : R2 → R as

WL(x, y) = W

(
r(x, y)
L

)
for (x, y) ∈ R2,

where we let
r(x, y) =

√
x2 + y2 for (x, y) ∈ R2.

Theorem 4.5 (Convolution kernel KL). Let FL be be a low-pass filter such that K ∈ L1(R2).
Then, the convolution kernel satisfies KL ∈ C0(R2) for all L > 0 and its Fourier transform is
given by

FKL(x, y) = WL(x, y) ∀ (x, y) ∈ R2.

Proof. Since W ∈ L∞(R) has compact support, the bivariate window function WL is compactly
supported and satisfies WL ∈ L1(R2). Hence, with the Riemann-Lebesgue lemma follows that
F−1WL ∈ C0(R2). Furthermore, for all (x, y) ∈ R2 we obtain

F−1WL(x, y) = 1
4π2

∫
R

∫
R
WL(X,Y ) ei(xX+yY ) dX dY

= 1
4π2

∫ π

0

∫
R
W (S/L) |S| eiS(x cos(θ)+y sin(θ)) dS dθ

= 1
4π2

∫ π

0

∫
R
FL(S) eiS(x cos(θ)+y sin(θ)) dS dθ

by transforming (X,Y ) = (S cos(θ), S sin(θ)) from Cartesian coordinates to polar coordinates.
With the definition of the band-limited function κL and the back projection operator B follows
that

F−1WL(x, y) = 1
2π

∫ π

0
κL(x cos(θ) + y sin(θ), θ) dθ = 1

2 BκL(x, y) = KL(x, y).

Consequently, we have KL ∈ C0(R2) and applying the Fourier inversion formula shows that

FKL = WL,

since K ∈ L1(R2) implies KL ∈ L1(R2) for all L > 0 due to the scaling property (4.5).



30 4 Method of filtered back projection

Before we proceed, we wish to add one remark concerning the convolution kernel KL.
Remark 4.6. Since the bivariate window WL has compact support and satisfies WL ∈ L1(R2),
its inverse Fourier transform is analytic due to the Paley-Wiener theorem. Consequently, the
convolution kernel KL not only satisfies KL ∈ C0(R2), but also lies in C ∞(R2). Furthermore,
due to the Riemann-Lebesgue lemma the assumption KL ∈ L1(R2) implies that WL is continuous
on R2 and, thus, the univariate window W is continuous on R.

Combining Theorem 4.5 and Corollary 4.4 allows us to determine the Fourier transform FfL

of the approximate FBP reconstruction fL.
Corollary 4.7 (Fourier transform of fL). Let f ∈ L1(R2) and let FL be a low-pass filter such
that κ ∈ L1(R × [0, π)) and K ∈ L1(R2). Then, the Fourier transform FfL of the approximate
FBP reconstruction fL is given by

FfL = WL · Ff.
Since the window W is assumed to be compactly supported, Corollary 4.7 shows that the

approximate FBP reconstruction formula (4.2) provides a band-limited approximation fL to the
target function f . In particular, the approximation fL is arbitrarily smooth, fL ∈ C ∞

0 (R2).
Moreover, the assumptions f ∈ L1(R2) and K ∈ L1(R2) ensure that we also have fL ∈ L1(R2).
Remark 4.8. All statements of this section also hold in L2-sense without assuming additional
properties of FL. To be more precise, let f ∈ L1(R2) ∩ L2(R2) and let FL be be a low-pass filter.
Then, the approximate FBP reconstruction fL satisfies fL ∈ L2(R2) and can be rewritten as

fL = 1
2 B

(
κL ∗ Rf

)
= f ∗KL a.e. on R2.

Moreover, its Fourier transform FfL ∈ L2(R2) is given by

FfL = WL · Ff a.e. on R2.

If the window W is continuous at 0 and satisfies W (0) = 1, one can prove the L2-convergence

∥f − fL∥L2(R2)
L→∞−−−−→ 0.

On top of that, one can show that the approximate FBP reconstruction operator

RLg = 1
2 B

(
κL ∗ g

)
defines a continuous linear operator RL : L1(R × [0, π)) ∩ L2(R × [0, π)) → L2(R2).

4.2 Low-pass filters
In the method of filtered back projection we replace the exact filer |S| in the FBP formula (3.1)
by a low-pass filter FL. In the general context of Fourier analysis, a low-pass filter is a function
F ≡ F (S) of the frequency variable S which maps the high-frequency parts of a signal to zero.
To this end, one usually requires a compact support supp(F ) ⊆ [−L,L] for a bandwidth L > 0
so that

F (S) = 0 ∀ |S| > L.

In the particular context of the FBP method, we require a sufficient approximation quality for
the low-pass filter FL within the frequency band [−L,L] in the sense that

FL(S) ≈ |S| on [−L,L] and FL(S) L→∞−−−−→ |S| ∀S ∈ R.

Therefore, we use the ansatz

FL(S) = |S|W (S/L) for S ∈ R

with an even window W ∈ L∞(R) with supp(W ) ⊆ [−1, 1] and W (0) = 1.
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(d) Ram-Lak filter
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(e) Shepp-Logan filter
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(f) Cosine filter

Figure 4.1: Three typical low-pass filters.

We now list some classical low-pass filters, which are widely used in the FBP method of CT.
To this end, recall that ⊔L : R → R denotes the characteristic function of the interval [−L,L],
i.e.,

⊔L(S) =
{

1 for |S| ≤ L

0 for |S| > L.

For the sake of brevity, we set ⊔≡ ⊔1.

Example 4.9. The Ram-Lak filter is given by the window function

W (S) = ⊔(S) for S ∈ R

such that

FL(S) = |S| · ⊔L(S) =
{

|S| for |S| ≤ L

0 for |S| > L.

The Ram-Lak window and filter are shown in Figure 4.1(a) and Figure 4.1(d), respectively.

In the following, let sinc denote the unnormalized cardinal sine function, i.e.,

sinc(t) = sin(t)
t

for t ∈ R.

Example 4.10. The Shepp-Logan filter is given by the window function

W (S) = sinc
(πS

2
)

· ⊔(S) for S ∈ R

such that

FL(S) = |S| · sinc
(πS

2L
)

· ⊔L(S) =
{2L

π

∣∣ sin (πS
2L

)∣∣ for |S| ≤ L

0 for |S| > L.

The Shepp-Logan window and filter are shown in Figure 4.1(b) and Figure 4.1(e), respectively.
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(a) Hamming window (β = 0.5)
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(b) Hamming window (β = 0.75)
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(c) Hamming window (β = 0.95)
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(d) Hamming filter (β = 0.5)
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(e) Hamming filter (β = 0.75)
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(f) Hamming filter (β = 0.95)

Figure 4.2: The Hamming filter for β ∈ {0.5, 0.75, 0.95}.

Note that the Ram-Lak and Shepp-Logan window have jump discontinuities at S ∈ {−1, 1}.
In contrast to this, the window of the next low-pass filter is continuous on the whole real line.
Example 4.11. The Cosine filter is given by the window function

W (S) = cos
(πS

2
)

· ⊔(S) for S ∈ R

such that

FL(S) = |S| · cos
(πS

2L
)

· ⊔L(S) =
{

|S| · cos
(

πS
2L

)
for |S| ≤ L

0 for |S| > L.

The Cosine window and filter are shown in Figure 4.1(c) and Figure 4.1(f), respectively.
Combining the Ram-Lak and a modified Cosine filter yields the so called Hamming filters.

Example 4.12. The Hamming filter with parameter β ∈
[1

2 , 1
]

is given by the window function

W (S) = (β + (1 − β) cos(πS)) · ⊔(S) for S ∈ R

such that

FL(S) =

|S| ·
(
β + (1 − β) cos

(
πS
L

))
for |S| ≤ L

0 for |S| > L.

The Hamming window and filter are shown Figure 4.2 for parameter β ∈ {0.5, 0.75, 0.95}.
Another class of low-pass filters depending on a parameter is given by the Gaussian filters.

Example 4.13. The Gaussian filter with parameter β > 1 is given by the window function

W (S) = exp
(

−
(πS
β

)2)
· ⊔(S) for S ∈ R

such that

FL(S) =

|S| · exp
(

−
(

πS
βL

)2) for |S| ≤ L

0 for |S| > L.

The Gaussian window and filter are shown in Figure 4.3 for parameter β ∈ {2.5, 5, 7.5}.
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(a) Gaussian window (β = 2.5)
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(b) Gaussian window (β = 5)
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(c) Gaussian window (β = 7.5)
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(d) Gaussian filter (β = 2.5)
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(e) Gaussian filter (β = 5)
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(f) Gaussian filter (β = 7.5)

Figure 4.3: The Gaussian filter for β ∈ {2.5, 5, 7.5}.

4.3 Reconstruction in parallel beam geometry
The approximate FBP reconstruction formula (4.1) assumes the Radon data Rf(t, θ) to be
available for all (t, θ) ∈ R × [0, π). In practice, however, only finitely many Radon samples are
given and we have to recover the target function f from a finite set of Radon data

{Rf(tj , θj) | j = 1, . . . , J} for some J ∈ N.

Thus, the implementation of the FBP method requires a suitable discretization of formula (4.1).
To be more precise, we have to discretize the convolution product ∗ and the back projection
operator B. This also includes the specification of a sampling scheme for the Radon transform
Rf and the inverse Fourier transform F−1FL of the chosen low-pass filter.

A commonly used sampling scheme is given by the parallel beam geometry, where the Radon
lines ℓt,θ are equally spaced in both the radial variable t ∈ R and the angular variable θ ∈ [0, π).
More precisely, for N uniformly distributed angles we collect Radon samples along 2M + 1
parallel lines per angle with a fixed spacing d > 0. Hence, the Radon data are of the form

(Rf)j,k = Rf(tj , θk) (4.7)

with
tj = j · d for j = −M, . . . ,M and θk = k · π

N
for k = 0, . . . , N − 1

so that in total N · (2M + 1) Radon samples are taken. For illustration, Figure 4.4 shows the
arrangement of 108 Radon lines in [−1, 1]2 with N = 12, M = 4 and sampling spacing d = 0.25.

Shannon sampling

Before we come to the discretization of the FBP method (4.1), we first discuss the sampling
process in more detail, which will help to select a sample spacing d. In this paragraph we will see
that we can uniquely recover a band-limited function h ∈ L2(R) from uniformly spaced discrete
function values h(tj), for j ∈ Z, if the sampling distance d = tj+1 − tj is chosen reasonably. This
is the statement of the classical Shannon sampling theorem and the sample spacing d corresponds
to the smallest detail in h that is still recognizable after sampling the function.
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Figure 4.4: Parallel beam geometry with N = 12, M = 4 and d = 0.25.

Theorem 4.14 (Shannon sampling theorem). Let h ∈ L2(R) be a band-limited function with
supp(Fh) ⊆ [−L,L] for some bandwidth L > 0. Then, h is uniquely determined by the discrete
values h

(
πk
L

)
, for k ∈ Z, and we have

h(t) =
∑
k∈Z

h
(πk
L

)
sinc(Lt− kπ) ∀ t ∈ R. (4.8)

Proof. Let h ∈ L2(R) be band-limited with supp(Fh) ⊆ [−L,L] for some bandwidth L > 0. By
the Rayleigh-Plancherel theorem we then have Fh ∈ L2([−L,L]) ⊂ L1([−L,L]), which implies
that h has a continuous representative due to the Riemann-Lebesgue lemma. Thus, the Fourier
inversion formula holds pointwise and in L2-sense yielding

h(t) = F−1(Fh)(t) = 1
2π

∫ L

−L
Fh(ω) eiωt dω = L

2π2

∫ π

−π
Fh
(Lω
π

)
eiωLt/π dω ∀ t ∈ R.

For fixed t ∈ R we now consider the Fourier expansion of eiωLt/π as a function in L2([−π, π]),
which is given by

eiωLt/π =
∑
k∈Z

ck eiωk ∀ω ∈ [−π, π]

with the Fourier coefficients

ck = 1
2π

∫ π

−π
eiωLt/π e−iωk dω = 1

2

∫ 1

−1
ei (Lt−kπ) ω dω = sinc(Lt− kπ) ∀ k ∈ Z.

Recall that the partial sums of the above Fourier series converge in the L2-norm, i.e.,∫ π

−π

∣∣∣∣eiωLt/π −
n∑

k=−n

ck eiωk

∣∣∣∣2 dω n→∞−−−→ 0.

Since Fh ∈ L2([−L,L]), this in combination with the Cauchy-Schwarz inequality implies that∣∣∣∣∣∣
∫ π

−π
Fh
(Lω
π

)
eiωLt/π dω −

n∑
k=−n

ck

∫ π

−π
Fh
(Lω
π

)
eiωk dω

∣∣∣∣∣∣ n→∞−−−→ 0.

Consequently, we can interchange the order of summation and integration so that, for all t ∈ R,

h(t) = L

2π2

∫ π

−π
Fh
(Lω
π

)∑
k∈Z

sinc(Lt− kπ) eiωk dω =
∑
k∈Z

sinc(Lt− kπ) L

2π2

∫ π

−π
Fh
(Lω
π

)
eiωk dω

=
∑
k∈Z

sinc(Lt− kπ) 1
2π

∫ L

−L
Fh(ω) eiωπk/L dω =

∑
k∈Z

h
(πk
L

)
sinc(Lt− kπ),

where we again use the Fourier inversion formula.
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We remark that the formula (4.8) is also called Shannon-Whittaker interpolation formula
and more generally we have

h(t) =
∑
k∈Z

h(k · d) sinc
(π
d

(t− k · d)
)

∀ t ∈ R

if the spacing d > 0 of the discrete samples h(k · d), with k ∈ Z, satisfies the Nyquist condition

d ≤ π

L
.

The largest possible sample spacing d = π
L is known as the Nyquist rate.

Remark 4.15. If h ∈ S(R) is only essentially L-band-limited in the sense that, for 0 < ε ≪ 1,∫
R\[−L,L]

|Fh(ω)| dω ≤ ε,

the reconstruction of h from discrete samples h(k · d), for k ∈ Z and sampling distance d > 0,
by using

Sdh(t) =
∑
k∈Z

h(k · d) sinc
(π
d

(t− k · d)
)

for t ∈ R

is no longer exact. If d ≤ π
L , however, [12, Theorem III.1.3] shows that the reconstruction error

can be bounded by
∥Sdh− h∥L∞(R) ≤ ε

π
.

Discrete FBP reconstruction formula for parallel beam geometry

We now address the discretization of the FBP method (4.1) for the approximate reconstruction
of a target function f from discrete Radon data {(Rf)j,k} given in parallel beam geometry (4.7).
To this end, from now on we assume that f is compactly supported with

supp(f) ⊆ Br(0) for some r ∈ N.

We start with discretizing the convolution product ∗ in (4.1) between the Radon data Rf and
the inverse Fourier transform F−1FL of the low-pass filter FL. Here, for fixed angle θ ∈ [0, π),
we have to approximate the convolution integral

(F−1FL ∗ Rf)(S, θ) =
∫
R

F−1FL(S − t) R(t, θ) dt for S ∈ R

by only using the discrete data

Rf(tj , θ) = Rf(j · d, θ) for j ∈ Z

taken at equally spaced sampling points tj = j ·d, for j ∈ Z, with fixed sampling distance d > 0.
To achieve this, we apply the composite trapezoidal rule and replace the above convolution
integral by the (infinite) sum

(F−1FL ∗ Rf)(S, θ) ≈ d
∑
j∈Z

F−1FL(S − tj) Rf(tj , θ) for (S, θ) ∈ R × [0, π).

Since f is assumed to have compact support, the above sum is in fact finite and, consequently,
we obtain

(F−1FL ∗ Rf)(S, θ) ≈ d
M∑

j=−M

F−1FL(S − tj) Rf(tj , θ) for (S, θ) ∈ R × [0, π),

where M ∈ N is chosen sufficiently large such that, for any angle θ ∈ [0, π),

Rf(t, θ) = 0 ∀ |t| > M · d.
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Let us continue with the discretization of the back projection operator B, which is for a
function h ≡ h(S, θ) in polar coordinates given by

Bh(x, y) = 1
π

∫ π

0
h(x cos(θ) + y sin(θ), θ) dθ for (x, y) ∈ R2.

In (4.1), this has to be applied to the function
h(S, θ) = (F−1FL ∗ Rf)(S, θ) for (S, θ) ∈ R × [0, π),

where the Radon data Rf(t, θ) is only known for a finite set of N angles

θk = k · π
N

for k = 0, . . . , N − 1.

Thus, for the discretization of B we again use the composite trapezoidal rule and replace the
above integral by the sum

Bh(x, y) ≈ 1
N

N−1∑
k=0

h(x cos(θk) + y sin(θk), θk) for (x, y) ∈ R2.

Combining the discretization steps leads us to a discrete version of the FBP method (4.1)
given by

fD(x, y) = d

2N

N−1∑
k=0

M∑
j=−M

F−1FL(x cos(θk) + y sin(θk) − tj) Rf(tj , θk) for (x, y) ∈ R2,

which we write in compact form as

fD = 1
2 BD

(
F−1FL ∗D Rf

)
.

The evaluation of the discrete reconstruction fD requires the computation of the values
(F−1FL ∗D Rf)(x cos(θk) + y sin(θk), θk) ∀ 0 ≤ k ≤ N − 1

for each reconstruction point (x, y) ∈ R2. To reduce the computational costs, we evaluate, for
each 0 ≤ k ≤ N − 1, the function

h(t, θk) = (F−1FL ∗D Rf)(t, θk) = d
M∑

j=−M

F−1FL(t− tj) Rf(tj , θk) for t ∈ R

only at the sampling points ti = i · d for i ∈ I with a sufficiently large index set I ⊂ Z. For each
reconstruction point (x, y) ∈ R2 we then interpolate the value h(t, θk) at t = x cos(θk)+y sin(θk)
by using a suitable interpolation method I. This leads us to the discrete FBP reconstruction
formula

fFBP = 1
2 BD

(
I
[
F−1FL ∗D Rf

])
. (4.9)

There are many possible choices for the interpolation method I. In the following, we give two
examples that are commonly used. For the sake of brevity, we set hk = h(·, θk) for 0 ≤ k ≤ N−1.

• Nearest neighbour interpolation: Let t ∈ [tm, tm+1) for some m ∈ Z. Then, the
function value hk(t) is approximated by

I0hk(t) =
{
hk(tm) for t− tm ≤ tm+1 − t

hk(tm+1) for t− tm > tm+1 − t.

This defines a piecewise constant interpolant I0hk of hk, which is discontinuous in general.

• Linear spline interpolation: Let t ∈ [tm, tm+1) for some m ∈ Z. Then, the function
value hk(t) is approximated by

I1hk(t) = 1
d

[(t− tm)hk(tm+1) + (tm+1 − t)hk(tm)] .

This defines a piecewise linear interpolant I1hk of hk, which is globally continuous.
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According to [13, Section 5.1.1] the optimal sampling conditions for the reconstruction of an
essentially L-band-limited target function f supported in Br(0) are given by

d ≤ π

L
, M ≥ r

d
, N ≥ rL

leading to the well-known optimal sampling relation

N = π ·M.

Here, the restriction d ≤ π
L ensures that the convolution ∗ in (4.1) is properly discretized, while

N ≥ rL guarantees a satisfactory discretization of the back projection B via the trapezoidal
rule. Since for fixed angle θ ∈ [0, π) the function

h(S) = (F−1FL ∗ Rf)(S, θ) for S ∈ R

is band-limited with bandwidth L, the condition on d corresponds to the Nyquist rate for h
according to the Shannon sampling theorem. Finally, the relation M ≥ r

d ensures that the
whole support of the target function f is covered during the acquisition of the Radon data.

Since we assume that f is supported in Br(0) for some r ∈ N and N,M have to be integers,
we couple the discretization parameters d > 0 and M,N ∈ N with the bandwidth L via

d = π

L
, M = r · L

π
, N = 3 ·M

and choose L to be a multiple of π, i.e., L = π · J for some J ∈ N.
The computation of the discretized approximate FBP reconstruction fFBP in (4.9) requires

the evaluation of the inverse Fourier transform F−1FL of the utilized low-pass filter FL at the
sampling points

tj = j · π
L

for j ∈ Z.

Therefore, in the following we give analytical expressions for the samples F−1FL

( jπ
L

)
, for j ∈ Z,

for the Ram-Lak, Shepp-Logan and Cosine filter:

(i) For the Ram-Lak filter we have

F−1FL

(jπ
L

)
=


L2

2π for j = 0
0 for j ̸= 0 even
− 2L2

π3j2 for j ̸= 0 odd.

(ii) For the Shepp-Logan filter we have

F−1AL

(jπ
L

)
= 4L2

π3(1 − 4j2) .

(iii) For the Cosine filter we have

F−1AL

(jπ
L

)
= 2L2

π2

(
(−1)j

1 − 4j2 − 2(1 + 4j2)
π(1 − 4j2)2

)
.

We summarize the discrete FBP method in the following image reconstruction algorithm,
where we assume that the reconstruction fFBP in (4.9) is evaluated in Cartesian grid points{

(xm, yn) ∈ R2 | (m,n) ∈ Ix × Iy

}
with finite index sets Ix × Iy ⊂ N × N.
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Algorithm 1 Discrete FBP method in parallel beam geometry
Input: Radon data (Rf)j,k = Rf(tj , θk) for j = −M, . . . ,M , k = 0, . . . , N − 1

1: choose low-pass filter FL with bandwidth L > 0

2: for k = 0, . . . , N − 1 do ▷ Computation of the discrete convolution
3: for i ∈ I do

4: h(ti, θk) = π

L

M∑
j=−M

F−1FL(ti − tj) Rf(tj , θk)

5: end for
6: end for

7: choose interpolation method I

8: for m ∈ Ix do ▷ Computation of the discrete back projection
9: for n ∈ Iy do

10: fFBP(xm, yn) = 1
2N

N−1∑
k=0

Ih(xm cos(θk) + yn sin(θk), θk)

11: end for
12: end for

Output: Approximate reconstruction fFBP on Cartesian grid {(xm, yn) | (m,n) ∈ Ix × Iy}

For illustration, we use Algorithm 1 to reconstruct the Shepp-Logan phantom (see Figure 2.2)
and the thorax phantom (see Figure 2.3) from finite Radon data. Both phantoms are supported
in B1(0), i.e., we set r = 1. The FBP reconstructions of the phantoms are displayed in Figure 4.5,
where we used linear interpolation and the Ram-Lak filter with window function

W (S) = ⊔(S) for S ∈ R

and bandwidth L = 50π so that

FL(S) =
{

|S| for |S| ≤ 50π
0 for |S| > 50π.

This corresponds to M = 50 and N = 150 so that in total (2M + 1)N = 15150 Radon samples
were taken. Both reconstructions were evaluated on a square grid with 256 × 256 pixels.

(a) Shepp-Logan phantom (b) Thorax phantom

Figure 4.5: FBP reconstructions of two phantoms with the Ram-Lak filter and L = 50π.
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4.4 Reconstruction in fan beam geometry

In this section we describe another commonly used sampling scheme for the Radon transform,
called fan beam geometry. In this scanning protocol the X-ray source rotates around the object
under investigation and emits a fan of X-ray beams that are detected by a large detector arc
situated opposite of the source, see Figure 1.5(c). In the following, we again assume that the
target function f is compactly supported with

supp(f) ⊆ Br(0) for some r > 0

and that the X-ray source travels on a full circle of radius D > r so that its position xS ∈ R2

can be expressed as

xS = D

(
cos(β)
sin(β)

)
= Dnβ for β ∈ [0, 2π).

This gives rise to define the fan beam transform Df of f as follows, see also Figure 4.6.

Definition 4.16 (Fan beam transform). Let f ∈ L1(R2) be a function in Cartesian coordinates.
Then, the fan beam transform Df of f is defined as

Df(α, β) =
∫

Lα,β

f(x, y) d(x, y) for (α, β) ∈
(
−π

2 ,
π

2
)

× [0, 2π), (4.10)

where the fan beam Lα,β ⊂ R2 denotes the unique straight line passing through Dnβ that makes
the angle α with the line joining Dnβ and the origin.

An inspection of Figure 4.6 reveals that we can express the fan beam transform Df in (4.10)
in terms of the Radon transform Rf in (2.4).

Observation 4.17. For any (α, β) ∈ (−π
2 ,

π
2 ) × [0, 2π) we have Lα,β = ℓt,θ with

t = D sin(α) and θ = α+ β − π

2

so that
Df(α, β) = Rf(D sin(α), α+ β − π/2). (4.11)

x

y

xS

de
te
ct
or

α

β

D

θ

•t Lα,β = ℓt,θ

Figure 4.6: Illustration of the fan beam parametrization.
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(a) D = 3, φ = 2π
9 (b) D = 2, φ = π

3

Figure 4.7: Fan beam geometry with p = 6 and q = 8.

In standard fan beam geometry, the fan beams Lα,β are uniformly distributed in both angular
variables α ∈ (−π

2 ,
π
2 ) and β ∈ [0, 2π). More precisely, for p equally spaced angular positions of

the X-ray source we collect samples along 2q+ 1 fan beams with fixed angular spacing ∆α > 0.
Hence, the fan beam data are of the form

(Df)j,k = Df(αj , βk) (4.12)
with

αj = j · ∆α for j = −q, . . . , q and βk = k · ∆β for k = 0, . . . , p− 1
so that in total p · (2q+ 1) fan beam samples are taken. Let φ ∈ (0, π) denote the opening angle
of the X-ray fan. Then, the angular spacings ∆α and ∆β are chosen as

∆α = φ

2q and ∆β = 2π
p
.

The source distance D > r has to be chosen such that the whole reconstruction region Br(0) is
covered by the fan beams, i.e.,

r ≤ D sin(φ/2).
For illustration, Figure 4.7 shows the fan beam arrangement of 102 lines with p = 6 and q = 8.
In Figure 4.7(a) we chose D = 3 and φ = 2π

9 , which corresponds to the angular spacing ∆α = π
54 ,

whereas in Figure 4.7(b) we chose D = 2 and φ = π
3 so that in this case we have ∆α = π

48 .

Discrete FBP reconstruction formula for fan beam geometry

Based on (4.11), one way to reconstruct f from fan beam data (4.12) is to transform the data into
parallel beam data by interpolation and apply the discrete FBP reconstruction formula (4.9).
This procedure is called rebinning, but introduces artefacts in the reconstruction. Hence, it is
preferable to develop a specially adapted reconstruction algorithm for the fan beam geometry.

Starting point for the derivation of the reconstruction formula for fan beam data is the
approximate FBP formula (4.1), i.e.,

fL(x, y) = 1
2π

∫ π

0

∫
R

(F−1FL)(x cos(θ) + y sin(θ) − t) Rf(t, θ) dt dθ,

where FL is a low-pass filter of bandwidth L > 0. Since supp(f) ⊆ Br(0) with r < D and the
Radon transform satisfies the evenness condition

Rf(t, θ + π) = Rf(−t, θ) ∀ (t, θ) ∈ R × [0, π),
this can be rewritten as

fL(x, y) = 1
4π

∫ 2π

0

∫ D

−D
(F−1FL)(x cos(θ) + y sin(θ) − t) Rf(t, θ) dtdθ.
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According to (4.11), we now apply the transformation

t = D sin(α) and θ = α+ β − π

2
yielding the approximate FBP formula for the fan beam transform

fL(x, y) = D

4π

∫ 2π

0

∫ π/2

−π/2
(F−1FL)(Sx,y(α, β)) cos(α) Df(α, β) dα dβ, (4.13)

where
Sx,y(α, β) = x cos(α+ β − π/2) + y sin(α+ β − π/2) −D sin(α).

As the function F−1FL is radially symmetric, we now investigate the term |Sx,y(α, β)| for a
fixed reconstruction point (x, y) ∈ R2 and fixed angles (α, β) ∈ (−π

2 ,
π
2 ) × [0, 2π). To this end,

let x = (x, y) and again xS = Dnβ = (D cos(β), D sin(β)). Moreover, let γ be the angle between
x − xS and −xS and let y be the orthogonal projection of x onto the line Lα,β, see Figure 4.8.
Then, we have

|Sx,y(α, β)| = |x · nα+β−π/2 −D sin(α)| = ∥x − y∥R2 = ∥x − xS∥R2 sin(|γ − α|),

where
∥x − xS∥2

R2 = (x−D cos(β))2 + (y −D sin(β))2

and
cos(γ) = − (x − xS) · xS

∥x − xS∥R2 ∥xS∥R2
= D − x cos(β) − y sin(β)√

(x−D cos(β))2 + (y −D sin(β))2 .

Moreover, the function F−1FL has the homogeneity property

(F−1FL)(σS) = σ−2(F−1FσL)(S) ∀σ > 0

so that
(F−1FL)(Sx,y(α, β)) = ∥x − xS∥−2

R2 (F−1F∥x−xS∥R2 L)(sin(γ − α)).
With this, equation (4.13) can be rewritten as

fL(x, y) = D

4π

∫ 2π

0
∥x − xS∥−2

R2

∫ π/2

−π/2
(F−1F∥x−xS∥R2 L)(sin(γ − α)) cos(α) Df(α, β) dα dβ,

where ∥x − xS∥R2 and γ are independent of α. Therefore, the α-integral is a convolution.
Unfortunately, the convolution kernel F−1F∥x−xS∥R2 L depends on x so that the convolution has
to be done for every reconstruction point x = (x, y) ∈ R2, which is computationally costly.

• •

•

α

γ

y

x

xS

(0, 0)

D sin(α)

x·nα+β−π/2

D

Lα,β

nα+β−π/2

Figure 4.8: Simplification of the fan beam parametrization.
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Algorithm 2 Discrete FBP method in fan beam geometry
Input: Fan beam data (Df)j,k = Df(αj , βk) for j = −q, . . . , q, k = 0, . . . , p− 1

1: choose low-pass filter FL with bandwidth L > 0

2: for k = 0, . . . , p− 1 do ▷ Computation of the discrete convolution
3: for i ∈ I do

4: h(αi, βk) = ∆α
q∑

j=−q

F−1FL(D sin(αi − αj)) cos(αj) Df(αj , βk)

5: end for
6: end for

7: choose interpolation method I

8: for m ∈ Ix do ▷ Computation of the discrete back projection
9: for n ∈ Iy do

10: fFBP(xm, yn) = D3

2p

p−1∑
k=0

(
(xm −D cos(βk))2 + (yn −D sin(βk))2)−1 Ih(γm,n,k, βk)

11: with γm,n,k = sgn(xm sin(βk) − yn cos(βk)) arccos
(

D−xm cos(βk)−yn sin(βk)√
(xm−D cos(βk))2+(yn−D sin(βk))2

)
12: end for
13: end for

Output: Approximate reconstruction fFBP on Cartesian grid {(xm, yn) | (m,n) ∈ Ix × Iy}

To reduce the complexity of the calculations, we make the following approximation. Assume
that r ≪ D. Then, ∥x − xS∥R2 ≈ D for x ∈ Br(0) and (4.13) can be approximately written as

fL(x, y) ≈ D3

4π

∫ 2π

0
∥x − xS∥−2

R2

∫ π/2

−π/2
(F−1FL)(D sin(γ − α)) cos(α) Df(α, β) dα dβ. (4.14)

This formula can now be treated exactly as (4.1) in the parallel case, leading to Algorithm 2.
According to [13, Section 5.1.3] the fan beam parameters have to satisfy

q ≥ φ

2πDL, p ≥ 2D
D + r

rL, D ≥ 3r.

For illustration, we use Algorithm 2 to reconstruct the Shepp-Logan phantom from fan beam
samples. The data and FBP reconstruction are displayed in Figure 4.9, where we chose r = 1,
φ = π

3 , D = 3, p = 270, q = 90 as well as linear interpolation and Ram-Lak filter with L = 180.

(a) Fan beam data (b) FBP reconstruction

Figure 4.9: Fan beam reconstruction of Shepp-Logan phantom with Ram-Lak filter and L = 180.



Chapter 5

Algebraic reconstruction techniques

In this chapter we describe another popular approach, given by the class of algebraic methods, to
solve the basic CT reconstruction problem of recovering a compactly supported target function
f ∈ L2(Ω) with supp(f) ⊆ Br(0), for r > 0, on a rectangular image domain Ω ⊂ R2 from its
Radon data

{Rf(t, θ) | t ∈ R, θ ∈ [0, π)} .
In contrast to the analytic approaches described in the previous chapters, algebraic techniques
are not based on analytical inversion formulas for the Radon transform but on a fully discrete
formulation of the above reconstruction problem. One of the most popular algebraic methods
is given by the so called algebraic reconstruction technique (ART), which is an implementation
of the classical Kaczmarz method for iteratively solving systems of linear equations.

5.1 Discrete reconstruction problem
We start with deriving the fully discrete formulation of the CT reconstruction problem. In this
setting, the sought function f is discretized beforehand to solving the reconstruction problem.
To this end, a set of basis function ϕk ∈ L2(Ω), k = 1, . . . , N , of the reconstruction space is fixed
and the function f is assumed to be expressible as a linear combination of these basis functions,
i.e.,

f =
N∑

k=1
ck ϕk (5.1)

for some coefficient vector c = (c1, . . . , cN )T ∈ RN . Furthermore, we assume that we deal with
a finite number of Radon data

y = (Rf(t1, θ1), . . . ,Rf(tM , θM ))T ∈ RM .

Then, using the ansatz (5.1) for the target function f , the linearity of the Radon transform R
gives

yj = Rf(tj , θj) =
N∑

k=1
ck Rϕk(tj , θj) ∀ j = 1, . . . ,M

and, thus, the fully discrete version of the CT reconstruction problem is given by the linear
system of equations

Ac = y, (5.2)
whose system matrix

A = (aj,k)j=1,...,M
k=1,...,N

∈ RM×N

is called Radon matrix and consists of the matrix elements

aj,k = Rϕk(tj , θj).
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The most common choice is the so called pixel basis. In this case, the image domain Ω ⊂ R2

is discretized by using a grid of Ir × Ic small squares, called picture elements or, in short, pixels.
To specify the pixel basis, the pixels □1, . . . ,□N are labelled column-wise with N = Ir · Ic and
for k ∈ {1, . . . , N} we define the basis function χk as

χk(x, y) =
{

1 for (x, y) ∈ □k

0 for (x, y) ̸∈ □k.

Then, the image f can be written as

f =
N∑

k=1
ck χk,

where the coefficient ck corresponds to the image’s greyscale value at pixel □k. Moreover, the
elements of the Radon matrix are of the form

Rχk(tj , θj) =
∫

ℓtj ,θj

χk(x, y) d(x, y) = Length
(
ℓtj ,θj

∩ □k

)
i.e., the element aj,k corresponds to the length of the intersection of the jth Radon line ℓtj ,θj

with the kth pixel □k in the reconstruction grid. Thus, the Radon matrix A is rather sparse
and usually very large. For example, if we use a reconstruction grid with 256 × 256 pixels and
Radon data in parallel beam geometry with 300 angles and 201 parallel lines per angle, we have
N = 65536 and M = 60300 so that A ∈ R60300×65536 has 3.95 · 109 elements.
Example 5.1. We consider the discretization of the image domain Ω = [−1, 1]2 with 3×3 pixels
and the six Radon lines

ℓ(1) = ℓ−
√

2
3 , π

4
, ℓ(2) = ℓ0, π

4
, ℓ(3) = ℓ√

2
3 , π

4
, ℓ(4) = ℓ− 2

3 , π
2
, ℓ(5) = ℓ0, π

2
, ℓ(6) = ℓ 2

3 , π
2

see also Figure 5.1. Then, the linear system Ac = y takes the form

2
3



0
√

2 0 0 0
√

2 0 0 0√
2 0 0 0

√
2 0 0 0

√
2

0 0 0
√

2 0 0 0
√

2 0
0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0





c1
c2
c3
c4
c5
c6
c7
c8
c9


=



y1
y2
y3
y4
y5
y6


. (5.3)

Note that this system is underdetermined and, thus, has infinitely many solutions if it is solvable.

c1

c2

c3

c4

c5

c6

c7

c8

c9

ℓ(1)

y1

ℓ(2)

y2

ℓ(3)

y3

ℓ(4)
y4

ℓ(5)
y5

ℓ(6)
y6

Figure 5.1: Illustration of the discretization and labeling leading to the linear system in (5.3).
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5.2 Linear least squares approximation
Recall that the linear system Ac = y in (5.2) is called overdetermined if there are more equations
that unknowns, i.e.,

M > N,

and underdetermined if there are more unknowns than equations, i.e.,
N > M.

In the case of an overdetermined system, the equation Ac = y is likely to not have an ex-
act solution and one typically applies linear least squares approximation to instead solve the
minimization problem

∥Ac− y∥2
RM −→ min

c∈RN
!. (5.4)

Consequently, its solution
c∗ = arg min

c∈RN

∥Ac− y∥2
RM

provides the vector y∗ = Ac∗ which is the closest vector to y in the range im(A) of A.
To solve the minimization problem (5.4) for a given measurement vector y ∈ RM , we define

the objective function J : RN → R≥0 as
J(c) = ∥Ac− y∥2

RM = (Ac− y)T (Ac− y) = cTATAc− 2cTAT y + yT y for c ∈ RN

with the gradient
∇J(c) = 2ATAc− 2AT y

and the Hessian
∇2J(c) = 2ATA,

which is positive semi-definite. Consequently, any solution to (5.4) is a root of ∇J and satisfies
the so called normal equation

ATAc = AT y, (5.5)
i.e., the vector Ac−y belongs to the nullspace ker(AT ) of AT and, hence, is orthogonal to im(A).
If A ∈ RM×N has full rank

rank(A) = N,

the matrix ATA ∈ RN×N is positive definite so that the normal equation (5.5) has a unique
solution c∗ ∈ RN , which then also uniquely solves the least squares minimization problem (5.4).
In general, however, ATA need not be invertible so that the least squares solution c∗ is not
uniquely determined. Nonetheless, the corresponding range element y∗ = Ac∗ ∈ RM is the
unique element in im(A) that is closest to the given measurement vector y ∈ RM .

The Gram matrix ATA ∈ RN×N is typically very large, dense and ill-conditioned so that
solving (5.5) is numerically infeasible. An efficient and numerically stable method for solving the
least squares problem (5.4) is based on the QR factorization of the Radon matrix A ∈ RM×N ,

A = QR,

with an orthogonal matrix Q ∈ RM×M and an upper triangular matrix R ∈ RM×N of the form

R =
(
R̂
0

)
,

where

R̂ =

r11 . . . r1N

. . . ...
0 rNN

 ∈ RN×N .

Note that A has full rank if and only if no diagonal entry of R̂ vanishes, i.e.,
rkk ̸= 0 ∀ k = 1, . . . , N.
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Since the orthogonal matrix Q has the inverse Q−1 = QT and QT is norm-preserving, the
objective function J : RN → R≥0 can be rewritten as

J(c) = ∥Ac− y∥2
RM = ∥QRc− y∥2

RM = ∥Rc−QT y∥2
RM = ∥R̂c− ŷ1∥2

RN + ∥ŷ2∥2
RM−N ,

where
QT y =

(
ŷ1
ŷ2

)
with ŷ1 ∈ RN and ŷ2 ∈ RM−N .

Consequently, a solution to the minimization problem (5.4) can be computed by solving the
triangular system

R̂c = ŷ1

with a backward substitution and the least squares error is given by

∥Ac∗ − y∥2
RM = ∥ŷ2∥2

RM−N ,

where the least squares solution c∗ ∈ RN is uniquely determined if and only if A has full rank.

Tikhonov regularization

When solving the discrete reconstruction problem (5.2), one still has to consider the ill-posedness
of the CT reconstruction problem and apply a regularization method. A typical strategy is to
incorporate prior knowledge into the reconstruction procedure. This can be done by applying
the general framework of variational regularization. In this setting, a regularized solution of
the linear system (5.2) is computed by minimizing a Tikhonov type functional Jγ : RN → R≥0,
defined as

Jγ(c) = ∥Ac− y∥2
RM + γ Λ(c) for c ∈ RN ,

where γ > 0 is the regularization parameter and Λ : RN → R≥0 is the prior function. The first
term denotes the data fidelity term and controls the data error, whereas the second term acts
as a penalty term and encodes the prior knowledge about the solution. The parameter γ > 0 is
used to compromise between the approximation quality of a solution c∗

γ and its regularity.
There are many possible choices for the prior term, depending on the particular features of

the unknown object that shall be preserved or emphasized. One prominent example is the total
variation (TV) seminorm, which can be used for enforcing edge-preserving reconstructions. In
this paragraph, we focus on another relevant special case, where the functional Λ is of the form

Λ(c) = ∥c∥2
B = cTBc for c ∈ RN

with a symmetric and positive definite matrix B ∈ RN×N . We remark that choosing the identity
matrix B = Id corresponds to the classical Tikhonov regularization.

Theorem 5.2 (Regularized least squares). Let A ∈ RM×N and let B ∈ RN×N be symmetric
and positive definite. Then, for any γ > 0 and y ∈ RM the regularized least squares problem

∥Ac− y∥2
RM + γ ∥c∥2

B −→ min
c∈RN

! (5.6)

has the unique solution
c∗

γ = (ATA+ γ B)−1AT y ∈ RN ,

which satisfies
c∗

γ
γ→∞−−−→ 0 and c∗

γ
γ→0−−−→ c∗

0,

where c∗
0 ∈ RN is that solution of the linear least squares problem

∥Ac− y∥2
RM −→ min

c∈RN
!

that minimizes the norm ∥ · ∥B induced by the matrix B.
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Proof. For fixed γ > 0 and y ∈ RM we regard the cost function Jγ : RN → R≥0 with

Jγ(c) = ∥Ac− y∥2
RM + γ ∥c∥2

B = cT (ATA+ γ B)c− 2cTAT y + yT y.

Then, for any c ∈ RN we have

∇Jγ(c) = 2(ATA+ γ B)c− 2AT y and ∇2Jγ(c) = 2(ATA+ γ B).

Since B is positive definite by assumption, for any v ∈ RN \ {0} follows that

vT (ATA+ γ B)v = ∥Av∥2
RM + γ ∥v∥2

B > 0,

i.e., ATA + γ B is positive definite as well. Consequently, Jγ is strictly convex and possesses a
unique global minimum which is characterized by the generalized normal equation

(ATA+ γ B) c = AT y,

i.e., the regularized least squares problem (5.6) has the unique solution

c∗
γ = (ATA+ γ B)−1AT y.

To characterize the asymptotic behaviour of c∗
γ for γ → ∞ and γ → 0, we first establish a

suitable representation of c∗
γ . Since B is positive definite, we can rewrite Jγ as

Jγ(c) = ∥Ac− y∥2
RM + γ ∥c∥2

B = ∥AB−1/2B
1/2c− y∥2

RM + γ ∥B1/2c∥2
RN

and, thus, by defining

C = AB−1/2 ∈ RM×N and b = B
1/2c ∈ RN

the minimization problem (5.6) can be equivalently written as

∥Cb− y∥2
RM + γ ∥b∥2

RN −→ min
b∈RN

!. (5.7)

To solve (5.7), we employ the singular value decomposition of C,

C = UΣV T ,

where U = (u1, . . . , uM ) ∈ RM×M and V = (v1, . . . , vN ) ∈ RN×N are orthogonal matrices and

Σ =


σ1 0

. . .
σρ

0 0

 ∈ RM×N

carries the singular values σ1 ≥ . . . ≥ σρ > 0 of C with ρ = rank(A). Then, the solution to (5.7)
is given by

b∗
γ =

ρ∑
j=1

σj

σ2
j + γ

(uT
j y) vj ∈ RN

and satisfies
b∗

γ
γ→∞−−−→ 0

as well as
b∗

γ
γ→0−−−→ b∗

0 =
ρ∑

j=1
σ−1

j (uT
j y) vj = C+y,

where C+ is the pseudoinverse of C, i.e., b∗
0 is the norm-minimal solution of the non-regularized

least squares problem
∥Cb− y∥2

RM −→ min
b∈RN

!.

Consequently, for the solution c∗
γ = B−1/2b∗

γ to (5.6) follows that

c∗
γ

γ→∞−−−→ 0 and c∗
γ

γ→0−−−→ B−1/2b∗
0 = c∗

0.
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(a) Shepp-Logan phantom (b) Thorax phantom

Figure 5.2: Tikhonov reconstructions of two phantoms with B = Id and γ = 0.05.

For illustration, we use Tikhonov regularized least squares approximation with B = Id and
γ = 0.05 to reconstruct the Shepp-Logan phantom (see Figure 2.2(a)) and the thorax phantom
(see Figure 2.3(a)) from finite Radon data in parallel beam geometry withM = 130 andN = 260.
To this end, we use a reconstruction grid with 256 × 256 pixels and solve the generalized normal
equation

(ATA+ γ B) c = AT y

by applying the conjugated gradient method. The reconstructions can be found in Figure 5.2.

5.3 Kaczmarz’s method

In the case of an underdetermined system, the equation Ac = y is likely to have infinitely many
solutions and we apply an iterative procedure called Kaczmarz’s method. Let aj ∈ RN denote the
jth row of the Radon matrix A ∈ RM×N and yj ∈ R be the jth component of the measurement
vector y ∈ RM . Then, the linear system Ac = y consists of the M linear equations

aT
j c = yj for 1 ≤ j ≤ M

and the idea of Kaczmarz’s method is to generate a sequence c(0), c(1), . . . of vectors c(k) ∈ RN

satisfying one of the above equations. To this end, the previous iterate c(k−1) is projected onto
the affine space Saj(k),yj(k) generated by the j(k)th equation aT

j(k)c = yj(k).

Definition 5.3 (Affine space). For r ∈ RN and p ∈ R, the affine space Sr,p is defined as

Sr,p =
{
x ∈ RN

∣∣∣ rTx = p
}

⊂ RN .

Note that r is orthogonal to Sr,p and, thus, the orthogonal projection ΠSr,p onto Sr,p is given
by

ΠSr,pu = u− rTu− p

rT r
r for u ∈ RN .

For the sake of brevity, let Πj denote the orthogonal projection onto the affine space Saj ,yj and
define

Π = ΠM · · · Π1.

With this, Kaczmarz’s method can be formulated as follows. Choose a starting vector c(0) ∈ RN

and iterate
c(k) = Πc(k−1) for k ∈ N (5.8)

until a stopping criterion is fulfilled, see also Algorithm 3.
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Algorithm 3 Kaczmarz’s method
Input: System matrix A ∈ RM×N , measurement vector y ∈ RM and tolerance δ > 0

1: choose starting vector c(0) ∈ RN

2: for k = 1, 2, . . . do
3: c(k,0) = c(k−1)

4: for j = 1, . . . ,M do

5: c(k,j) = c(k,j−1) −
aT

j c
(k,j−1) − yj

aT
j aj

aj

6: end for
7: c(k) = c(k,M)

8: if ∥c(k) − c(k−1)∥RN ≤ δ or ∥Ac(k) − y∥RM ≤ δ ∥y∥RM then
9: return c∗ = c(k)

10: end if
11: end for

Output: Approximate solution c∗ to Ac = y

We will show that Kaczmarz’s method (5.8) converges to a solution of Ac = y for k → ∞.
The proof is based on the following result on the iteration of linear orthogonal projections.
Lemma 5.4. For j = 1, . . . ,M , let Pj be the orthogonal projection onto a linear space Vj ⊂ RN

and define
P = PM · · ·P1.

Then, we have
P kx

k→∞−−−→ Tx ∀x ∈ RN ,

where T is the orthogonal projection onto ker(Id −P ).
Proof. Let x ∈ RN . Since Pj is an orthogonal projection, its operator norm is bounded by 1,
i.e.,

∥Pj∥ ≤ 1,
and, thus, we also have

∥P∥ ≤ ∥PM ∥ · . . . · ∥P1∥ ≤ 1.
Consequently, the sequence (∥P kx∥RN )k∈N is monotonically decreasing and bounded from below
so that its limit p ∈ R≥0 exists. If p = 0, this implies that

P kx
k→∞−−−→ 0.

To prove that we then also have Tx = 0, recall the orthogonal decomposition

RN = ker(Id −P ) ⊕ ker(Id −P )⊥ = ker(Id −P ) ⊕ im(Id −P ).

Hence, Id −T is the orthogonal projection onto im(Id −P ) so that

(Id −T )(Id −P ) = Id −P =⇒ T = TP

and
(Id −P )T = 0 =⇒ T = PT.

In particular, we indeed have

Tx = P kTx = TP kx
k→∞−−−→ 0

so that
P kx

k→∞−−−→ Tx.
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To deal with the case p > 0, we first prove by induction on the number M of factors in P

that for any sequence (xk)k∈N with ∥xk∥RN ≤ 1 and ∥Pxk∥RN
k→∞−−−→ 1 we have

lim
k→∞

(Id −P )xk = 0.

For M = 1 holds that

∥(Id −P )xk∥2
RN = ∥(Id −P1)xk∥2

RN = ∥xk∥2
RN − 2xT

k P1xk + ∥P1xk∥2
RN

= ∥xk∥2
RN − 2(xk − P1xk)TP1xk − ∥P1xk∥2

RN = ∥xk∥2
RN − ∥P1xk∥2

RN .

Since ∥xk∥RN ≤ 1 and ∥P1xk∥RN
k→∞−−−→ 1 by assumption, we have ∥(Id −P )xk∥RN

k→∞−−−→ 0 and
the induction seed holds. Now, assume that the induction hypothesis holds for M − 1 factors.
We put

P = PMS for S = PM−1 · · ·P1

and obtain

(Id −P )xk = (Id −S)xk + (S − P )xk = (Id −S)xk + (Id −PM )Sxk.

The first term goes to 0 by the induction hypothesis and the second term goes to 0 by the
induction seed, since

∥Sxk∥RN ≤ ∥PM−1∥ · . . . · ∥P1∥ · ∥xk∥RN ≤ 1

and
∥PMSxk∥RN = ∥Pxk∥RN

k→∞−−−→ 1.

We now set
xk = ∥P kx∥−1

RN P
kx ∈ RN .

Then,
∥xk∥RN = 1 ∧ ∥Pxk∥RN = ∥P kx∥−1

RN ∥P k+1x∥RN
k→∞−−−→ 1

and, consequently,

lim
k→∞

(Id −P )xk = 0 =⇒ lim
k→∞

(Id −P )P kx = 0 = lim
k→∞

P k(Id −P )x.

This implies that P kz goes to 0 for all z ∈ im(Id −P ). On the other hand, for z ∈ ker(Id −P )
we have

P kz = z ∀ k ∈ N.

Hence, with the orthogonal decomposition

ker(Id −P ) ⊕ im(Id −P ) = RN

follows that
P kx = P kTx+ P k(Id −T )x = Tx+ P k(Id −T )x k→∞−−−→ Tx

and the proof is complete.

With Lemma 5.4 we are now prepared to prove the convergence of Kaczmarz’s method (5.8).

Theorem 5.5. Let A ∈ RM×N and y ∈ RM be given. If the linear system Ac = y has at least
one solution, then Kaczmarz’s method (5.8) converges to a solution c∗ of the system. Moreover,
if c(0) ∈ im(AT ), e.g. c(0) = 0, then Kaczmarz’s method converges to a minimal norm solution,
i.e.,

c∗ = arg min
Ac=y

∥c∥RN .
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Proof. Let Qj , for j = 1, . . . ,M , be the orthogonal projection onto ker(aj), i.e.,

Qju = u−
aT

j u

aT
j aj

aj for u ∈ RN ,

and define
Q = QM · · · Q1.

Moreover, let c ∈ RN be a solution to Ac = y and let c(0) ∈ RN . Then, for any x ∈ RN we have

Πjx = x−
aT

j x− yj

aT
j aj

aj = c+ (x− c) −
aT

j (x− c)
aT

j aj
aj = c+ Qj(x− c)

so that
Πx = c+ Q(x− c)

and, consequently,
c(k) = Πkc(0) = c+ Qk(c(0) − c) ∀ k ∈ N.

Let T be the orthogonal projection onto the nullspace ker(A) of A, which satisfies

ker(A) =
M⋂

j=1
ker(aj) = im(Q) = ker(Id −Q).

Then, with Lemma 5.4 we have

c(k) = c+ Qk(c(0) − c) k→∞−−−→ c+ T (c(0) − c) = (Id −T ) c+ T c(0) = c∗,

where
Ac∗ = Ac−AT c+AT c(0) = Ac = y,

i.e., c∗ ∈ RN is a solution to Ac = y. If c(0) ∈ im(AT ) = ker(A)⊥, we have T c(0) = 0 and, hence,

c∗ = (Id −T )c = A+y

with the pseudoinverse A+ of A, since the orthogonal projection T onto ker(A) can be expressed
as

T = Id −A+A.

Consequently, c∗ is the minimal norm solution to Ac = y.

Note that Kaczmarz’s method can be modified by introducing a relaxation parameter ω > 0.
To this end, we replace the affine-linear projections Πj by Πω

j = (1 − ω) Id +ωΠj , i.e.,

Πω
j u = u− ω

aT
j u− yj

aT
j aj

aj for u ∈ RN .

One can show that Theorem 5.5 also holds for Kaczmarz’s method with relaxation if ω ∈ (0, 2).

Remark 5.6. We collect the following remarks on the convergence of Kaczmarz’s method (5.8).

(a) If the affine spaces Saj ,yj are almost orthogonal, Kaczmarz’s method usually produces a
good approximate solution after only a few iterations.

(b) If the affine spaces Saj ,yj are almost parallel, which is usually the case in tomography,
then Kaczmarz’s method may converge very slowly. The convergence can sometimes be
accelerated by randomly permuting the rows of the system matrix A ∈ RM×N .

(c) One still has to address the ill-posedness of the CT reconstruction problem and apply a
regularization strategy. One option is to stop the iteration early enough before convergence.
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Algorithm 4 Kaczmarz’s method with non-negativity constraint
Input: System matrix A ∈ RM×N , measurement vector y ∈ RM and tolerance δ > 0

1: choose starting vector c(0) ∈ RN

2: for k = 1, 2, . . . do
3: c(k,0) = c(k−1)

4: for j = 1, . . . ,M do

5: c(k,j) = max
(

0, c(k,j−1) −
aT

j c
(k,j−1) − yj

aT
j aj

aj

)
6: end for
7: c(k) = c(k,M)

8: if ∥c(k) − c(k−1)∥RN ≤ δ or ∥Ac(k) − y∥RM ≤ δ ∥y∥RM then
9: return c∗ = c(k)

10: end if
11: end for

Output: Approximate solution c∗ to Ac = y with side condition c ≥ 0

The original algebraic reconstruction technique (ART) involves a non-negativity constraint.
This can be incorporated by using positive basis functions in (5.1) and ensuring c ≥ 0 by applying
the projection

Π+ = Π+
M · · · Π+

1 ,

where
Π+

j u = max
(

0, u−
aT

j u− yj

aT
j aj

aj

)
for u ∈ RN .

With this, Kaczmarz’s method with non-negativity constraint can be formulated as follows.
Choose a starting vector c(0) ∈ RN and iterate

c(k) = Π+c(k−1) for k ∈ N

until a stopping criterion is fulfilled. This classical version of ART is summarized in Algorithm 4.
To illustrate the reconstruction with ART, we use Algorithm 4 to recover the Shepp-Logan

phantom (see Figure 2.2(a)) and the thorax phantom (see Figure 2.3(a)) on a reconstruction grid
with 256 × 256 pixels from Radon data in parallel beam geometry with M = 120 and N = 240.
The ART reconstructions of both phantoms are displayed in Figure 5.3.

(a) Shepp-Logan phantom (b) Thorax phantom

Figure 5.3: ART reconstructions of two phantoms.



Chapter 6

Three-dimensional reconstruction

In this chapter we introduce two different multivariate versions of the Radon transform, namely
the X-ray transform P and the multivariate Radon transform R, and explain exact as well as
approximate reconstruction techniques in the case of three dimensions. For the sake of simplicity,
we restrict the discussion to smooth functions f ∈ S(Rn) and skip some technical proofs.

6.1 Multivariate integral transforms
To define a multivariate version of the Radon transform for functions on Rn, let us first recall
that the bivariate Radon transform integrates functions over straight lines in the plane, which
can either be seen as affine subspaces of dimension 1 or as affine subspaces of codimension 1. The
latter subspaces are called hyperplanes and in two dimensions the difference between integrals
over hyperplanes and integrals over lines is only notational. In higher dimensions, however, these
two concepts lead to different integral transforms, which are introduced in this section. To this
end, let Sn−1 denote the unit sphere in Rn, i.e., Sn−1 =

{
x ∈ Rn

∣∣ ∥x∥Rn = 1
}
.

The multivariate Radon transform

The (n-dimensional) Radon transform R integrates a function f on Rn over hyperplanes, i.e.,
affine subspaces of dimension n− 1, which are parametrized as follows.
Definition 6.1 (Hyperplane). For any pair (θ, t) ∈ Sn−1 × R of parameters, we define

Hθ,t =
{
x ∈ Rn

∣∣ xT θ = t
}

⊂ Rn

to be the unique hyperplane that is perpendicular to θ and has (signed) distance t to the origin.

Note that any hyperplane in Rn can be characterized as an Hθ,t for suitable (θ, t) ∈ Sn−1 ×R
and we have

H−θ,−t = Hθ,t. (6.1)
For the sake of brevity, we define the unit cylinder Zn = Sn−1 × R.
Definition 6.2 (Radon transform). Let f ∈ S(Rn). Then, the Radon transform Rf of f is
defined as

Rf(θ, t) =
∫

Hθ,t

f(x) dx for (θ, t) ∈ Zn.

Note that R defines a continuous linear operator from S(Rn) into the space Cb(Zn) of
continuous and uniformly bounded functions on Zn. Moreover, for any f ∈ S(Rn) we have

f ≥ 0 =⇒ Rf ≥ 0

and, due to (6.1),
Rf(−θ,−t) = Rf(θ, t). (6.2)
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For fixed direction θ ∈ Sn−1 we define the Radon projection Rθf of f ∈ S(Rn) as

Rθf(t) = Rf(θ, t) for t ∈ R.

Then, Rθ defines a continuous linear operator from S(Rn) into S(R) and we have the following
relation between the derivative of Rθf and the directional derivative of f .

Proposition 6.3. Let f ∈ S(Rn) and θ ∈ Sn−1. Then, we have

d
dtRθf(t) = Rθ(∇θf)(t) ∀ t ∈ R,

where ∇θf is the directional derivative of f in direction θ.

Proof. By the definition of Rθf , we have

Rθf(t) =
∫

Hθ,t

f(x) dx =
∫

θ⊥
f(y + tθ) dy,

since the hyperplane Hθ,t can be rewritten as

Hθ,t =
{
x ∈ Rn

∣∣ xT θ = t
}

=
{
y + tθ

∣∣ y ∈ θ⊥}.
Thus, differentiation with respect to t yields

d
dtRθf(t) =

∫
θ⊥

d
dtf(y + tθ) dt =

∫
θ⊥

∇f(y + tθ)T θ dt = Rθ(∇θf)(t),

where the order of differentiation and integration can be changed because f ∈ S(Rn).

We now prove the n-dimensional version of the Fourier slice theorem, Theorem 3.1. To this
end, recall that the Fourier transform Ff of f ≡ f(x) ∈ L1(Rn) is given by

Ff(ω) =
∫
Rn
f(x) e−ixT ω dx for ω ∈ Rn.

For a function h ≡ h(θ, t) on Zn satisfying h(θ, ·) ∈ L1(R) for all θ ∈ Sn−1 we define its Fourier
transform Fh as the univariate Fourier transform acting on the second variable t, i.e.,

Fh(θ, s) =
∫
R
h(θ, t) e−ist dt for (θ, s) ∈ Zn.

With this, the n-dimensional Fourier slice theorem reads as follows.

Theorem 6.4 (Fourier slice theorem). For any f ∈ S(Rn) we have

F(Rf)(θ, s) = Ff(sθ) ∀ (θ, s) ∈ Zn.

Proof. For (θ, s) ∈ Zn, the definition of the n-dimensional Fourier transform yields

Ff(sθ) =
∫
Rn
f(x) e−isxT θ dx =

∫
R

∫
xT θ=t

f(x) e−isxT θ dx dt

=
∫
R

(∫
xT θ=t

f(x) dx
)

e−ist dt = F(Rf)(θ, s)

by Fubini’s theorem and the definition of the n-dimensional Radon transform.

A direct consequence of the Fourier slice theorem is the injectivity of R.
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Corollary 6.5 (Injectivity of the Radon transform). For f ∈ S(Rn) we have

Rf = 0 =⇒ f = 0,

i.e., the Radon transform R is injective on S(Rn).

The inversion of R involves a rescaled version of the L2-adjoint of R, which is given by the
n-dimensional back projection B.

Definition 6.6 (Back projection). Let g ∈ Cb(Zn). Then, the back projection Bg of g is defined
as

Bg(x) = 1
(2π)n−1

∫
Sn−1

g(θ, xT θ) dθ for x ∈ Rn.

Based on the Fourier slice Theorem 6.4 we are now prepared to derive the n-dimensional
version of the filtered back projection (FBP) formula (3.1) for inverting R.

Theorem 6.7 (FBP formula). For f ∈ S(Rn) the filtered back projection formula

f(x) = 1
2 B

(
F−1[|S|n−1F(Rf)(θ, S)]

)
(x) (6.3)

holds for all x ∈ Rn.

Proof. Let x ∈ Rn be fixed. Applying the n-dimensional Fourier inversion formula to f yields
the identity

f(x) = F−1(Ff)(x) = 1
(2π)n

∫
Rn

Ff(ω) eixT ω dω = 1
(2π)n

∫
Sn−1

∫ ∞

0
Ff(sθ) eisxT θ sn−1 ds dθ.

With the eveness condition (6.2) and the Fourier slice Theorem 6.4 follows that

f(x) = 1
2(2π)n

∫
Sn−1

∫
R

F(Rf)(θ, S) eiSxT θ |S|n−1 dS dθ

= 1
2(2π)n−1

∫
Sn−1

F−1[|S|n−1F(Rf)(θ, S)](θ, xT θ) dθ

= 1
2 B

(
F−1[|S|n−1F(Rf)(θ, S)]

)
(x)

due to the definition of the back projection.

As in the two-dimensional case, the reconstruction problem from Radon data{
Rf(θ, t)

∣∣ (θ, t) ∈ Zn}
is ill-posed. The degree of ill-posedness can again be determined by studying the smoothing
effect of R in the Sobolev scale. To this end, recall that the Sobolev space Hα(Rn) of fractional
order α ∈ R is given by

Hα(Rn) =
{
f ∈ S ′(Rn)

∣∣ ∥f∥Hα(Rn) < ∞
}
,

where
∥f∥2

Hα(Rn) =
∫
Rn

(
1 + ∥x∥2

Rn

)α |Ff(x)|2 dx.

Furthermore, for an open subset Ω ⊂ Rn the space Hα
0 (Ω) consists of those Sobolev functions

whose support is contained in Ω, i.e.,

Hα
0 (Ω) =

{
f ∈ Hα(Rn)

∣∣ supp(f) ⊂ Ω
}
.
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For functions on Zn we define the Sobolev space Hα(Zn), for α ∈ R, as the space of all
functions g ≡ g(θ, t) with g(θ, ·) ∈ Hα(R) for almost all θ ∈ Sn−1 and

∥g∥Hα(Zn) =
(∫

Sn−1

∫
R

(1 + S2)α |Fg(θ, S)|2 dS dθ
)1/2

< ∞.

Then, one can prove that for f ∈ L1(Rn) ∩ Hα
0 (Ω) with α ∈ R and an open, bounded set Ω ⊂ Rn

we have Rf ∈ Hα+(n−1)/2(Zn) and the Sobolev estimate

cα,n ∥f∥Hα(Rn) ≤ ∥Rf∥Hα+(n−1)/2(Zn) ≤ Cα,n ∥f∥Hα(Rn)

holds with positive constants cα,n, Cα,n > 0 depending only on smoothness α and dimension n.
Consequently, the n-dimensional Radon reconstruction problem is ill-posed of order n−1

2 .

The X-ray transform

The (n-dimensional) X-ray transform P integrates a function f on Rn over straight lines, i.e.,
affine subspaces of dimension 1, which are parametrized as follows.

Definition 6.8 (Straight line). For any pair (θ, x) ∈ Sn−1 × Rn of parameters, we define

Lθ,x =
{
x+ tθ

∣∣ t ∈ R
}

⊂ Rn

to be the unique straight line in Rn with direction θ that passes through the reference point x.

Note that any straight line in Rn can be characterized as an Lθ,x for suitable (θ, x) ∈ Sn−1×Rn

and we have
Lθ,x+y = Lθ,x ∀ y ∈ ⟨θ⟩ =

{
tθ
∣∣ t ∈ R

}
.

Thus, it suffices to consider the tangent bundle Tn of Sn−1 given by

Tn =
{
(θ, x) ∈ R2n

∣∣ θ ∈ Sn−1, x ∈ θ⊥}.
Definition 6.9 (X-ray transform). Let f ∈ S(Rn). Then, the X-ray transform Pf of f is
defined as

Pf(θ, x) =
∫

Lθ,x

f(y) dy =
∫
R
f(x+ tθ) dt for (θ, x) ∈ Tn.

Note that P defines a continuous linear operator from S(Rn) into the space Cb(Tn) of con-
tinuous and uniformly bounded functions on Tn. Moreover, for any f ∈ S(Rn) we have

f ≥ 0 =⇒ Pf ≥ 0

and
Pf(−θ, x) = Pf(θ, x).

We now prove that the Radon transform Rf of f can be expressed as an integral over Pf .

Proposition 6.10. Let f ∈ S(Rn) and (ω, s) ∈ Zn. Then, for any θ ∈ Sn−1 with ωT θ = 0 we
have

Rf(ω, s) =
∫

x∈θ⊥

xT ω=s

Pf(θ, x) dx.

Proof. As ω, θ ∈ Sn−1 with ωT θ = 0, there is an orthogonal matrix A ∈ Rn×n with

Aω = e1 and Aθ = e2.
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This implies that {
x ∈ Rn

∣∣ x ∈ θ⊥, xTω = s
}

=
{
AT (s, 0, y)

∣∣ y ∈ Rn−2}
and, consequently,∫

x∈θ⊥

xT ω=s

Pf(θ, x) dx =
∫
Rn−2

Pf
(
θ,AT (s, 0, y)

)
dy =

∫
Rn−2

∫
R
f
(
AT ((s, 0, y) + t Aθ︸︷︷︸

=e2

)
)

dtdy

=
∫
Rn−1

f
(
AT (s, z)

)
dz =

∫
ω⊥
f(y + sω) dy = Rf(ω, s),

as stated.

For a function g ≡ g(θ, x) on Tn satisfying g(θ, ·) ∈ L1(θ⊥) for all θ ∈ Sn−1 we define its
Fourier transform Fg as the (n− 1)-dimensional Fourier transform on θ⊥ acting on the second
variable x, i.e.,

Fg(θ, y) =
∫

θ⊥
g(θ, x) e−ixT y dx for (θ, y) ∈ Tn.

With this, the Fourier slice theorem for the X-ray transform P reads as follows.

Theorem 6.11 (X-ray Fourier slice theorem). For any f ∈ S(Rn) we have

F(Pf)(θ, y) = Ff(y) ∀ (θ, y) ∈ Tn.

Proof. For (θ, y) ∈ Tn, the definition of the n-dimensional Fourier transform yields

Ff(y) =
∫
Rn
f(x) e−ixT y dx =

∫
θ⊥

(∫
R
f(x+ tθ) dt

)
e−ixT y dx = F(Pf)(θ, y)

by Fubini’s theorem and the definition of the X-ray transform.

A direct consequence of the X-ray Fourier slice theorem is the injectivity of P.

Corollary 6.12 (Injectivity of the X-ray transform). For f ∈ S(Rn) we have

Pf = 0 =⇒ f = 0,

i.e., the X-ray transform P is injective on S(Rn).

The inversion of P involves a rescaled version of the L2-adjoint of P, which is given by the
X-ray back projection K.

Definition 6.13 (X-ray back projection). Let g ∈ Cb(Tn). Then, the X-ray back projection Kg
of g is defined as

Kg(x) = 1
|Sn−2|

∫
Sn−1

g(θ,Eθx) dθ for x ∈ Rn,

where Eθ is the orthogonal projection onto θ⊥, i.e.,

Eθx = x− (xT θ) θ for x ∈ Rn.

Based on the X-ray Fourier slice Theorem 6.11 and the general integral formula∫
Rn
h(x) dx = 1

|Sn−2|

∫
Sn−1

∫
θ⊥

∥y∥Rn h(y) dy dθ (6.4)

we are now prepared to derive the X-ray version of the FBP formula (6.3) for inverting P.
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Theorem 6.14 (X-ray FBP formula). For f ∈ S(Rn) the X-ray filtered back projection formula

f(x) = 1
2π K

(
F−1[∥y∥RnF(Pf)(θ, y)]

)
(x) (6.5)

holds for all x ∈ Rn.

Proof. Let x ∈ Rn be fixed. Applying the n-dimensional Fourier inversion formula to f yields
the identity

f(x) = F−1(Ff)(x) = 1
(2π)n

∫
Rn

Ff(ω) eixT ω dω.

With the integral formula (6.4) and the X-ray Fourier slice Theorem 6.11 follows that

f(x) = 1
(2π)n |Sn−2|

∫
Sn−1

∫
θ⊥

∥y∥Rn Ff(y) eixT y dy dθ

= 1
(2π)n |Sn−2|

∫
Sn−1

∫
θ⊥

∥y∥Rn F(Pf)(θ, y) eixT y dy dθ

= 1
2π |Sn−2|

∫
Sn−1

F−1[∥y∥RnF(Pf)(θ, y)](θ,Eθx) dθ

= 1
2π K

(
F−1[∥y∥RnF(Pf)(θ, y)]

)
(x)

due to the definition of the X-ray back projection.

We close this section with studying the degree of ill-posedness of the reconstruction problem
from X-ray data {

Pf(θ, x)
∣∣ (θ, x) ∈ Tn}.

To this end, we define the Sobolev space Hα(Tn) of fractional order α ∈ R on Tn as the space
of all functions g ≡ g(θ, x) with g(θ, ·) ∈ Hα(θ⊥) for almost all θ ∈ Sn−1 and

∥g∥Hα(T n) =
(∫

Sn−1

∫
θ⊥

(
1 + ∥y∥2

Rn

)α |Fg(θ, y)|1/2 dy dθ
)1/2

< ∞.

Then, one can prove that for f ∈ L1(Rn) ∩ Hα
0 (Ω) with α ∈ R and an open, bounded set Ω ⊂ Rn

we have Pf ∈ Hα+1/2(Tn) and the Sobolev estimate

cα,n ∥f∥Hα(Rn) ≤ ∥Pf∥Hα+1/2(T n) ≤ Cα,n ∥f∥Hα(Rn)

holds with positive constants cα,n, Cα,n > 0 depending only on smoothness α and dimension n.
Consequently, the X-ray reconstruction problem is ill-posed of order 1

2 , independent of n.

6.2 Analytic inversion of the X-ray transform on R3

We now study the X-ray transform P in three dimensions, which describes the three-dimensional
X-ray model and, thus, is the most important case for applications. In this case, the filtered
back projection formula (6.5) for inverting P reads

f(x) = 1
2π K

(
F−1[∥y∥R3F(Pf)(θ, y)]

)
(x) = 1

(2π)4

∫
S2

∫
θ⊥

∥y∥R3 F(Pf)(θ, y) eixT y dy dθ.

Thus, one needs Pf(θ, y) for all θ ∈ S2 and y ∈ θ⊥ in order to find the function f . In practice,
however, Pf is usually not known on all of S2. This shows that the FBP formula for inverting P
in Theorem 6.14 is not as useful as the FBP formula for inverting R in Theorem 3.3. Instead,
we now present two different inversion formulas that are more suitable for applications.
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x1 x2

x3

x3 = − sin(ϑ0)

x3 = sin(ϑ0)

S20

Figure 6.1: Illustration of the spherical zone S2
0 in (6.6) for constant functions ϑ± = ±ϑ0.

Orlov’s formula

In the mid-1970s, Orlov derived an inversion formula for the X-ray transform P using parallel
X-ray projections only for a subset S2

0 ⊂ S2 of directions. Here, S2
0 is the spherical zone around

the equator given by

S2
0 =

{
θ(φ, ϑ)

∣∣ ϑ−(φ) ≤ ϑ ≤ ϑ+(φ), 0 ≤ φ < 2π
}

(6.6)

with spherical coordinates

θ(φ, ϑ) =

cos(φ) cos(ϑ)
sin(φ) cos(ϑ)

sin(ϑ)

 for 0 ≤ φ < 2π, |ϑ| ≤ π

2

and functions ϑ± : [0, 2π) → R such that

−π

2 < ϑ−(φ) < 0 < ϑ+(φ) < π

2 ∀ 0 ≤ φ < 2π.

For example, if ϑ± = ±ϑ0 are constant functions with ϑ0 ∈ (0, 1), then S2
0 is the spherical zone

between the horizontal planes x3 = ± sin(ϑ0), see Figure 6.1.
To state Orlov’s formula, let ℓ(x, y) denotes the length of the intersection of S2

0 with the
subspace spanned by the vectors x, y ∈ R3. Due to the assumptions on ϑ±, we have ℓ(x, y) > 0
if x and y are linearly independent. In this case, ℓ(x, y) is the length of the intersection of S2

0
with the plane spanned by 0, x, y ∈ R3.

Theorem 6.15 (Orlov’s formula). Let f ∈ S(R3). Then, Orlov’s inversion formula

f(x) = ∆
∫
S2

0

h(θ,Eθx) dθ (6.7)

holds for all x ∈ R3, where ∆ is the Laplace operator acting on x, i.e., ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3
,

and h is obtained from Pf by

h(θ, x) = 1
4π2

∫
θ⊥

Pf(θ, x− y)
ℓ(θ, y) ∥y∥R3

dy for (θ, x) ∈ T 3. (6.8)

Proof. See, for example, [13, Theorem 2.16].

Note that the integral in (6.7) is a back projection over S2
0 and the integral in (6.8) is a

convolution over θ⊥. Thus, a standard discretization of Orlov’s formula leads to an algorithm of
filtered back projection type for the reconstruction from X-ray data in parallel beam geometry.
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x1 x2

x3

Γ

Figure 6.2: Example for a curve Γ ⊂ R3 satisfying Tuy’s condition with respect to B1(0).

Grangeat’s formula

In contrast to Orlov’s inversion formula (6.7), Grangeat’s formula does not require parallel
projections for all directions in the spherical zone S2

0. Instead, it assumes that an X-ray source
emits a cone of X-ray beams and travels along a curve Γ ⊂ R3 around the object together with
a two-dimensional detector array. More precisely, we assume that for every point on the curve Γ
we are given the line integrals of a function f along all lines starting at that point and travelling
through supp(f). This motivates us to define the following variant of the X-ray transform P.

Definition 6.16 (Cone beam transform). Let f ∈ S(R3). Then, the cone beam transform Df
of f is defined as

Df(a, θ) =
∫ ∞

0
f(a+ tθ) dt for (a, θ) ∈ R3 × S2.

Note that D defines a continuous linear operator from S(R3) into Cb(R3 × S2) and we have

Df(a, θ) + Df(a,−θ) = Pf(θ, a).

We think of a as the source of an X-ray with direction θ. Moreover, we extend Df to R3×R3\{0}
by

Df(a, x) =
∫ ∞

0
f(a+ tx) dt = ∥x∥−1

R3 Df
(
a, ∥x∥−1

R3 x
)

for (a, x) ∈ R3 × R3 \ {0},

which makes Df a homogeneous function of degree −1 in the second argument.

Grangeat’s method for inverting D requires the curve Γ to satisfy the following condition of
Tuy-Kirillov. A practically important example for such a curve is shown in Figure 6.2.

Definition 6.17 (Tuy’s condition). Let Ω ⊂ R3 be a subset of R3 and let Γ ⊂ R3 be a curve
with parametrization

γ : [0, 1] → R3.

Then, Γ is said to satisfy Tuy’s condition with respect to Ω if every hyperplane H ⊂ R3 that
intersects Ω also intersects Γ, i.e., for every (θ, s) ∈ Z3 with Hθ,s ∩ Ω ̸= ∅ there is a tθ,s ∈ [0, 1]
such that γ(tθ,s) ∈ Hθ,s, that is

γ(tθ,s)T θ = s.

The gist of Grangeat’s method is the following relation between the cone beam transform D
and the three-dimensional Radon transform R, which is known as Grangeat’s formula.
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Theorem 6.18 (Grangeat’s formula). Let f ∈ S(R3). Then, for (a, θ) ∈ R3 × S2 we have

∂

∂t
Rf(θ, aT θ) =

∫
S2∩θ⊥

∇θDf(a, ω) dω,

where ∇θDf is the directional derivative of Df in direction θ, acting on the second variable.

Proof. According to Proposition 6.3 we have
∂

∂t
Rf(θ, t) = R(∇θf)(θ, t) ∀ t ∈ R.

Thus, with t = aT θ follows that
∂

∂t
Rf(θ, aT θ) =

∫
H

θ,aT θ

∇θf(x) dx =
∫

θ⊥
∇θf(a+ y) dy =

∫
S2∩θ⊥

∫ ∞

0
∇θf(a+ sω) s ds dω.

Now observe that

∇θf(a+ sω) =
3∑

j=1
θj

∂

∂xj
f(a+ sω)

and, by interchanging differentiation and integration,

∇θDf(a, ω) =
3∑

j=1
θj

∫ ∞

0
t
∂

∂xj
f(a+ tω) dt.

Consequently,

∂

∂t
Rf(θ, aT θ) =

∫
S2∩θ⊥

3∑
j=1

θj

∫ ∞

0
s
∂

∂xj
f(a+ sω) ds dω =

∫
S2∩θ⊥

∇θDf(a, ω) dω,

as stated.

The other ingredient of Grangeat’s method is the FBP formula (6.3) for n = 3, i.e.,

f(x) = 1
2 B

(
F−1[|S|2F(Rf)(θ, S)]

)
(x).

Using Proposition A.8, this can be rewritten as

f(x) = −1
2 B

(
∂2

∂t2
Rf(θ, t)

)
(x) = − 1

8π2

∫
S2

∂2

∂t2
Rf(θ, xT θ) dθ. (6.9)

Corollary 6.19 (Grangeat’s method). Let f ∈ S(R3) with support supp(f) and let Γ ⊂ R3 be
a curve parametrized by γ : [0, 1] → R3 that satisfies Tuy’s condition with respect to supp(f).
Then, the inversion formula

f(x) = − 1
8π2

∫
S2

∂

∂t

∫
S2∩θ⊥

∇θDf(γ(tθ,x), ω) dω dθ

holds for all x ∈ R3, where tθ,x ∈ [0, 1] satisfies xT θ = γ(tθ,x)T θ.

Proof. Since Γ satisfies Tuy’s condition with respect to supp(f), for any x ∈ supp(f) and θ ∈ S2

there is a tθ,x ∈ [0, 1] such that
xT θ = γ(tθ,x)T θ.

Now, using Grangeat’s formula, Theorem 6.18, with a = γ(tθ,x) yields

∂

∂t
Rf(θ, xT θ) =

∫
S2∩θ⊥

∇θDf(γ(tθ,x), ω) dω.

From this formula, ∂2

∂t2 Rf(θ, t) can be computed for t = xT θ for each x ∈ R3 with f(x) ̸= 0.
Using this in the three-dimensional FBP formula (6.9) gives the result.
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b
Source

Detector

Figure 6.3: Cone beam scanning geometry with source on a circle.

Grangeat’s method permits exact reconstruction of f if each plane hitting supp(f) contains
at least one source, i.e., point on the curve Γ. For the reconstruction of f at a point x ∈ supp(f)
it uses only those values of Df(γ(tθ,x), ω) for which ω is almost perpendicular to θ. Thus, it
requires cone beam data only along X-rays that run in a small cone whose axis joins x with an
arbitrary source position on Γ. Consequently, a discretization of Grangeat’s method leads to a
reconstruction algorithm for X-ray data in so called cone beam geometry. In practice, however,
the source-detector pair often travels along a circle, which does not satisfy Tuy’s condition.

6.3 Approximate inversion of the X-ray transform on R3

We close this chapter on three-dimensional reconstruction techniques by describing the so called
Feldkamp-Davis-Kress (FDK) algorithm, which is presently the most widely used approximate
reconstruction method for cone beam scanning with a circle as source curve, see Figure 6.3. Note
that none of the exact inversion formulas we described before applies to this scanning geometry.
Therefore, we do not aim at exact inversion but rather derive the ingenious approximate formula
which was given by Feldkamp, Davis and Kress in 1984.

We start with fixing notations. We assume that the X-ray source travels on a circle of radius
ρ > 0 in the horizontal x1 −x2-plane and specify its position by xS = ρθ with θ ∈ S1

0 = S1 ×{0},
i.e.,

xS =

ρ cos(φ)
ρ sin(φ)

0

 for 0 ≤ φ < 2π.

Moreover, we assume that the target function f is supported in Br(0) with 0 < r < ρ and denote
by g(θ, y) the line integral of f along the line joining xS = ρθ with y ∈ θ⊥, i.e.,

g(θ, y) = Df
(
ρθ,

y − ρθ

∥y − ρθ∥R3

)
.

The idea of the FDK algorithm is as follows. Consider the plane Π(x, θ) through ρθ and x
that intersects θ⊥ in a horizontal line. The reduction of the X-ray cone coming from the source to
this plane results in two-dimensional X-ray data in fan beam geometry with a straight detector
line. Thus, we use a linear version of the approximate fan beam reconstruction formula (4.14)
to compute the contribution of those beams to the reconstruction of f . Finally, we integrate
all those contributions over θ, disregarding the fact that they come from different planes, which
form a sheaf with vertex in x. The result is the FDK reconstruction of f at point x ∈ Br(0).
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Figure 6.4: Linear fan beam geometry.

Linear fan beam geometry

Before we come to the derivation of the FDK algorithm, we first explain the linear fan beam
geometry in two dimensions and how the FBP formula (4.14) can be adopted to this setting.

In linear fan beam geometry, a source travels on a circle with radius ρ > 0 around the object
under investigation and emits a fan of X-ray beams that are detected by a straight line detector.
The detector is located opposite the source and the detector positions are uniformly distributed
on the detector line orthogonal to the central ray of the fan, see Figure 6.4. We express the
source position xS ∈ R2 as

xS =
(
ρ cos(φ)
ρ sin(φ)

)
for 0 ≤ φ < 2π

and denote by g(φ, y) the line integral value of f along the line joining ρθ and yθ⊥, where

θ ≡ θ(φ) =
(

cos(φ)
sin(φ)

)
and θ⊥ ≡ θ⊥(φ) =

(
sin(φ)

− cos(φ)

)
.

With the two-dimensional Radon transform R the linear fan beam data g(φ, y) can be expressed
as

g(φ, y) = Rf(t, ψ)
with

t = ρy√
ρ2 + y2 and ψ = φ+ arctan

(y
ρ

)
− π

2 . (6.10)

Recall that, for supp(f) ⊆ Br(0) with 0 < r < ρ, the approximate FBP formula (4.1) can
be written as

fL(x) = 1
4π

∫ 2π

0

∫ ρ

−ρ
(F−1FL)(x1 cos(ψ) + x2 sin(ψ) − t) Rf(t, ψ) dt dψ,

with a low-pass filter FL of bandwidth L > 0. Introducing the coordinates (φ, y), we obtain

fL(x) = 1
4π

∫ 2π

0

∫ ρ

−ρ
(F−1FL)(x1 cos(ψ) + x2 sin(ψ) − t) g(φ, y) ρ3

(ρ2 + y2)3/2
dy dφ,

where (6.10) has to be inserted for t, ψ. After some manipulations similar to those in Section 4.4,
that are justified if r ≪ ρ, we arrive at the approximate FBP formula for linear fan beam data

fL(x) ≈ 1
4π

∫
S1

ρ2

(ρ− xT θ)2

∫ ρ

−ρ
(F−1FL)

(
ρxT θ⊥
ρ− xT θ

− y

)
g(θ, y) ρ

(ρ2 + y2)1/2
dy dθ, (6.11)

which can be implemented as the approximate FBP formula (4.14) for standard fan beam data.
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Feldkamp-Davis-Kress algorithm

We are now prepared to continue with the derivation of the FDK algorithm. To this end, we
introduce a coordinate system for the hyperplane θ⊥. For θ = (cos(φ), sin(φ), 0) with φ ∈ [0, 2π)
we set θ⊥ = (sin(φ),− cos(φ), 0). Then, θ⊥, e3 form an orthonormal basis of θ⊥ and the line
through ρθ and x hits θ⊥ at y = y2θ⊥ + y3e3 with

y2 = ρ

ρ− xT θ
xT θ⊥ and y3 = ρ

ρ− xT θ
x3. (6.12)

The plane Π(x, θ) intersects θ⊥ in the horizontal line

Lx,θ =
{
tθ⊥ + y3e3

∣∣ t ∈ R
}

and we define the point y3e3 on Lx,θ to be the origin in Π(x, θ). Then, the coordinates x′ of x
in Π(x, θ) are x′ = x− y3e3 and the direction vector θ′ lying above (or beneath) θ in Π(x, θ) is
given by

θ′ = ρθ − y3e3
ρ′ with ρ′ = (ρ2 + y2

3)1/2, (6.13)

where ρ′ is the distance of ρθ to the origin in Π(x, θ). We now use the linear fan beam FBP
formula (6.11) to compute the contribution of the direction θ′ to the approximate reconstruction
of f(x) as

I(x, θ) = ρ′2

(ρ′ − x′T θ′)2

∫ ρ

−ρ
(F−1FL)

(
ρ′x′T θ⊥

ρ′ − x′T θ′ − y′
2

)
g(θ, y′

2θ⊥ + y3e3) ρ′

(ρ′2 + y′
2

2)1/2
dy′

2,

where
x′T θ′ = ρ′

ρ
xT θ and x′T θ⊥ = xT θ⊥.

Using this and (6.13), we obtain

I(x, θ) = ρ2

(ρ− xT θ)2

∫ ρ

−ρ
(F−1FL)(y2 − y′

2) g(θ, y′
2θ⊥ + y3e3) (ρ2 + y2

3)1/2

(ρ2 + y′
2

2 + y2
3)1/2

dy′
2,

where y2, y3 are given in (6.12). This is the contribution of θ′ in Π(x, θ) to the approximate FBP
reconstruction of f at x. According to (6.11) we would have to integrate over the corresponding
contributions for all directions in Π(x, θ). However, the line integral data is not given for these
directions and the idea of FDK is to instead integrate over the sources we actually have, i.e.,
with S′ =

{ρθ−y3e3
ρ′

∣∣ θ ∈ S1
0
}

we compute

fL(x) ≈ 1
4π

∫
S′
I(x, θ) dθ′ = 1

4π

∫
S1

0

I(x, θ) ρ

(ρ2 + y2
3)1/2

dθ.

This results in the FDK approximate reconstruction formula

fL(x) ≈ 1
4π

∫
S1

0

ρ2

(ρ− xT θ)2

∫ ρ

−ρ
(F−1FL)(y2 − y′

2) g(θ, y′
2θ⊥ + y3e3) ρ

(ρ2 + y′
2

2 + y2
3)1/2

dy′
2 dθ

with y2, y3 from (6.12) and a low-pass filter FL of bandwidth L > 0 as in Section 4.2. It can
be implemented similar to the linear fan beam FBP reconstruction formula (6.11) and leads us
to an approximate reconstruction algorithm of filtered back projection type for X-ray data in
cone beam geometry with X-ray source on a circle. This reconstruction algorithm is known as
the Feldkamp-Davis-Kress (FDK) algorithm, which is still used in contemporary CT scanners.
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Mathematical tools

In this appendix, we state some general mathematical tools, which are used, but not proven
during the course. For a comprehensive treatment of the topics we refer the reader to [1], [18].

A.1 Fourier analysis
The Fourier transform is a basic tool in the mathematics of computerized tomography and is
used extensively in this course. In this section we define the n-dimensional Fourier transform
and collect some important properties. Furthermore, we introduce the convolution product and
describe its interplay with the Fourier transform.

The Fourier transform

We start with the definition of the Fourier transform on the space L1(Rn) of integrable functions.
Definition A.1 (Fourier transform). The Fourier transform Ff of a function f ∈ L1(Rn) is
defined as

Ff(ω) =
∫
Rn
f(x) e−ixT ω dx for ω ∈ Rn.

We remark that the Fourier transform Ff of a function f ∈ L1(Rn) is well-defined on Rn.
The first important observation is that in this case the Fourier transform Ff is even continuous
and, in particular, its point evaluation makes sense.
Lemma A.2 (Riemann-Lebesgue). For f ∈ L1(Rn), its Fourier transform Ff is uniformly
continuous on Rn and satisfies

|Ff(ω)| −→ 0 for ∥ω∥Rn → ∞.

Proof. See, for example, [18, Theorem I.1.2].

Let C0(Rn) denote the space of continuous functions vanishing at infinity, i.e.,

C0(Rn) =
{
f ∈ C (Rn)

∣∣ f(x) −→ 0 for ∥x∥Rn → ∞
}
,

which is equipped with the norm ∥ · ∥∞ given by

∥f∥∞ = sup
x∈Rn

|f(x)| for f ∈ C0(Rn).

Then, we have the following continuity result for the Fourier transform.
Theorem A.3. The Fourier transform F : L1(Rn) → C0(Rn) is a continuous linear operator
with norm ∥F∥ ≤ 1, i.e.,

∥Ff∥∞ ≤ ∥f∥L1(Rn) ∀ f ∈ L1(Rn).
Proof. See, for example, [18, Theorem I.1.1].
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We now define the inverse Fourier transform on L1(Rn).

Definition A.4 (Inverse Fourier transform). For f ∈ L1(Rn), the inverse Fourier transform
F−1f is defined as

F−1f(x) = (2π)−n
∫
Rn
f(ω) eixT ω dω for x ∈ Rn.

Although, by the Riemann-Lebesgue lemma, the Fourier transform Ff of f ∈ L1(Rn) van-
ishes at infinity, this does not necessarily imply that Ff ∈ L1(Rn). Thus, in order to apply the
inverse Fourier transform to Ff , we have to assume that Ff ∈ L1(Rn) is satisfied. In this case
we indeed get the following inverse relationship.

Theorem A.5 (Fourier inversion). Let f ∈ L1(Rn) with Ff ∈ L1(Rn). Then, the identity

F−1(Ff)(x) = f(x) = F(F−1f)(x)

holds for almost all x ∈ Rn with equality in every continuity point of f .

Proof. See, for example, [18, Corollary I.1.21].

As a corollary we get the injectivity of the Fourier transform on L1(Rn).

Corollary A.6 (Injectivity of F). For f ∈ L1(Rn) we have

Ff = 0 =⇒ f = 0,

i.e., the Fourier transform F is injective on L1(Rn).

We remark that the inverse Fourier transform F−1 can be expressed in terms of the Fourier
transform F and the parity operator ∗ : Lp(Rn) → Lp(Rn) for 1 ≤ p ≤ ∞, which is defined as

f∗(x) = f(−x) for x ∈ Rn.

Remark A.7. For f ∈ L1(Rn) we have F−1f = (2π)−n Ff∗ = (2π)−n (Ff)∗.

We now list some basic properties of the Fourier transform.

Proposition A.8. For f ∈ L1(Rn) the following properties hold true.

(i) Translation: For y ∈ Rn we consider the function

g(x) = f(x− y) for x ∈ Rn.

Then,
Fg(x) = e−ixT y Ff(x) ∀x ∈ Rn.

(ii) Scaling: For a > 0 we consider the function

g(x) = f(ax) for x ∈ Rn.

Then,
Fg(x) = a−n Ff(a−1x) ∀x ∈ Rn.

(iii) Modulation: For y ∈ Rn we consider the function

g(x) = eixT y f(x) for x ∈ Rn.

Then,
Fg(x) = Ff(x− y) ∀x ∈ Rn.
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(iv) Let α ∈ Nn
0 be a multi-index and Dα = ∂α

∂xα . If Dαf exists and is in L1(Rn), then

F(Dαf) = i|α| xα Ff,

whereas, if xαf is integrable on Rn, then

F(xαf) = i|α| Dα(Ff).

Proof. See, for example, [8, Theorem 7.8].

Another important property of the Fourier transform is Parseval’s identity.

Theorem A.9 (Parseval’s identity). For f, g ∈ L1(Rn) we have∫
Rn

Ff(x) g(x) dx =
∫
Rn
f(x) Fg(x) dx.

Proof. See, for example, [18, Theorem I.1.15].

The next theorem is the classical Rayleigh-Plancherel theorem, which shows that the Fourier
transform preserves the L2-norm up to a multiplicative constant.

Theorem A.10 (Rayleigh-Plancherel). Let f ∈ L1(Rn) and f ∈ L2(Rn) or Ff ∈ L2(Rn).
Then, we have Ff ∈ L2(Rn) or f ∈ L2(Rn), respectively, and

∥f∥L2(Rn) = (2π)−n/2 ∥Ff∥L2(Rn).

More generally, for f, g ∈ L1(Rn) ∩ L2(Rn) we have

(f, g)L2(Rn) = (2π)−n (Ff,Fg)L2(Rn).

Proof. See, for example, [18, Theorem I.2.1].

Since L1(Rn) ∩ L2(Rn) ⊂ L2(Rn) is dense, the Rayleigh-Plancherel theorem shows that the
Fourier transform can be continuously extended to an operator

F : L2(Rn) → L2(Rn),

which is an isometry up to a multiplicative constant. Further, the extended operator F is bijec-
tive on L2(Rn) and its inverse F−1 is the continuous extension of the inverse Fourier transform.
In this course, however, we will not distinguish between the regular Fourier transform and its
extension.

Consequently, the Fourier transform and its inverse are now defined on the whole of L2(Rn).
But for f ∈ L2(Rn), the point evaluation of Ff makes sense only almost everywhere and the
Fourier inversion formula holds in L2-sense.

Corollary A.11 (Fourier inversion in L2(Rn)). For f ∈ L2(Rn) the Fourier inversion formula

F−1(Ff) = f = F(F−1f)

holds in L2-sense and, in particular, almost everywhere on Rn.

We close this paragraph on the Fourier transform with a variant of the classical Paley-Wiener
theorem, which characterizes the Fourier transform of compactly supported functions.

Theorem A.12 (Paley-Wiener). Let f ∈ L1(Rn)\{0} be compactly supported. Then, its Fourier
transform Ff is analytic and cannot have compact support.

Proof. See, for example, [16, Theorem 7.23] and the identity theorem for analytic functions.
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The convolution product

We now define the convolution product of functions in L1(Rn) and investigate its interaction
with the Fourier transform.

Definition A.13 (Convolution). The convolution product f ∗ g of two functions f, g ∈ L1(Rn)
is defined as

(f ∗ g)(x) =
∫
Rn
f(x− y) g(y) dy for x ∈ Rn.

We remark that the convolution product of f, g ∈ L1(Rn) exists and is again in L1(Rn).
More generally, we have the following result.

Theorem A.14 (Young’s inequality). Let f ∈ Lp(Rn) and g ∈ Lq(Rn) with 1 ≤ p, q ≤ ∞.
Then, we have f ∗ g ∈ Lr(Rn) with 1 ≤ r ≤ ∞ satisfying

1
p

+ 1
q

= 1
r

+ 1

and Young’s inequality
∥f ∗ g∥Lr(Rn) ≤ ∥f∥Lp(Rn) ∥g∥Lq(Rn)

holds with equality if f and g are non-negative almost everywhere on Rn.

Proof. See, for example, [1, Theorem 3.13].

A special situation occurs if f ∈ Lp(Rn) and g ∈ Lq(Rn) with dual exponents 1 ≤ p, q ≤ ∞,
i.e.,

1
p

+ 1
q

= 1.

Theorem A.15. Let f ∈ Lp(Rn) and g ∈ Lq(Rn) with 1 ≤ p, q ≤ ∞ satisfying

1
p

+ 1
q

= 1.

Then, f ∗ g is bounded and continuous on Rn, i.e., f ∗ g ∈ Cb(Rn), where

Cb(Rn) =
{
f ∈ C (Rn)

∣∣ ∥f∥∞ < ∞
}
.

If we further have 1 < p, q < ∞, then f ∗ g vanishes at infinity, i.e., f ∗ g ∈ C0(Rn).

Proof. See, for example, [1, Theorem 3.14].

We now list some basic properties of the convolution product.

Proposition A.16. The convolution product satisfies the following properties.

(i) Commutativity:
f ∗ g = g ∗ f ∀ f, g ∈ L1(Rn)

(ii) Linearity:

f ∗ (α g + β h) = α (f ∗ g) + β (f ∗ h) ∀α, β ∈ R, f, g, h ∈ L1(Rn)

(iii) Integration:∫
Rn

(f ∗ g)(x) dx =
(∫

Rn
f(x) dx

)(∫
Rn
g(x) dx

)
∀ f, g ∈ L1(Rn)
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(iv) Translation: For f ∈ L1(Rn) and a ∈ Rn we consider the function

fa(x) = f(x− a) for x ∈ Rn.

Then,
fa ∗ g = (f ∗ g)a ∀ g ∈ L1(Rn).

(v) Let f ∈ L1(Rn) and let g ∈ C k(Rn), k ∈ N, be bounded such that its derivatives Dαg are
also bounded for all multi-indices α ∈ Nn

0 with |α| ≤ k. Then, we have f ∗ g ∈ C k(Rn) and

Dα(f ∗ g) = f ∗ Dαg.

Proof. See, for example, [1, Chapter 3.3].

We finish this section by stating the most important property of the convolution product,
which is given by the classical Fourier convolution theorem and describes the interaction between
the convolution product and the Fourier transform.

Theorem A.17 (Fourier convolution theorem). Let f, g ∈ L1(Rn) be given functions. Then,
we have

F(f ∗ g) = Ff · Fg

and
F−1(f ∗ g) = (2π)n F−1f · F−1g.

Additionally, if Ff,Fg ∈ L1(Rn), then

F(f · g) = (2π)−n (Ff) ∗ (Fg).

Proof. See, for example, [18, Theorem I.1.4].

Distributions

Distributions or, to be more precise, tempered distributions play an important role in the defi-
nition of Sobolev spaces of fractional order. Thus, in this section we introduce distributions as
generalized functions and extend the Fourier transform to the space of tempered distributions.

The space of distributions is given by the topological dual of the space of test functions,
which is defined as follows.

Definition A.18 (Space of test functions). Let Ω ⊆ Rn be a domain in Rn. Then, the space of
test functions on Ω is defined as

D(Ω) =
{
f ∈ C ∞(Ω)

∣∣ supp(f) ⊆ Ω compact
}
.

The following lemma explains the expression ’test function’.

Lemma A.19 (Fundamental lemma of variational calculus). Let Ω ⊆ Rn be a domain in Rn

and f ∈ L1
loc(Ω) be locally integrable. Then, we have

f ≡ 0 a.e. on Ω ⇐⇒
∫

Ω
f(x)ϕ(x) dx = 0 ∀ϕ ∈ D(Ω).

Proof. See, for example, [1, Lemma 2.75].

Calculating the integral
∫

Ω f(x)ϕ(x) dx is also called testing the function f ∈ L1
loc(Ω) with

ϕ ∈ D(Ω). Thus, the fundamental lemma of variational calculus states that f ∈ L1
loc(Ω) is

almost everywhere uniquely determined by testing with all functions ϕ ∈ D(Ω).
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Example A.20. The function f : Rn → R with

f(x) =

exp
(

− 1
1−∥x∥2

Rn

)
for ∥x∥Rn < 1

0 for ∥x∥Rn ≥ 1

is a test function on Rn, i.e., it satisfies f ∈ D(Rn).

We now introduce the notion of a distribution.

Definition A.21 (Distribution). Let Ω ⊆ Rn be a domain in Rn. The topological dual space of
D(Ω) with respect to the natural topology, denoted by D ′(Ω), is called the space of distributions.

We note that, for a domain Ω ⊆ Rn, each function f ∈ L1
loc(Ω) induces a distribution

Tf ∈ D ′(Ω) via
Tf (ϕ) =

∫
Ω
f(x)ϕ(x) dx for ϕ ∈ D(Ω).

In this sense we have L1
loc(Ω) ⊂ D ′(Ω) and distributions of the form Tf are called regular.

Because of the relation between f and Tf , distributions are also called generalized functions.
However, there also exist distributions that are not regular. One example is the well-known

Dirac distribution δ ∈ D ′(Rn) with

δ(f) = f(0) for f ∈ D(Rn)

or, for fixed x0 ∈ Rn, the shifted Dirac distribution δx0 ∈ D ′(Rn) with

δx0(f) = f(x0) for f ∈ D(Rn).

In what follows, we denote the action of a distribution T ∈ D ′(Ω) on a test function ϕ ∈ D(Ω)
by the duality pairing

⟨T, ϕ⟩ = T (ϕ).
With this we define the derivative of a distribution as follows.

Definition A.22 (Derivative of a distribution). Let Ω ⊆ Rn be a domain and T ∈ D ′(Ω). For
α ∈ Nn

0 , we define the derivative DαT ∈ D ′(Ω) of T via

⟨DαT, ϕ⟩ = (−1)|α| ⟨T,Dαϕ⟩ for ϕ ∈ D(Ω).

We use the same technique to define the multiplication of a distribution with a C ∞-function.
To this end, we note that the product g · ϕ of g ∈ C ∞(Ω) and ϕ ∈ D(Ω) is again in D(Ω).

Definition A.23 (Multiplication with a C ∞-function). Let Ω ⊆ Rn be a domain. Further, let
T ∈ D ′(Ω) be a distribution and g ∈ C ∞(Ω). Then, the distribution g · T ∈ D ′(Ω) is defined as

⟨g · T, ϕ⟩ = ⟨T, g · ϕ⟩ for ϕ ∈ D(Ω).

We would like to use this technique to also define the Fourier transform of a distribution.
However, the Fourier transform of a non-trivial test function is not a test function, since it cannot
have compact support due to the Paley-Wiener theorem. To resolve this problem, we have to
restrict ourselves to a smaller subspace of distributions, the so called tempered distributions.
This space is given by the topological dual of the so called Schwartz space of rapidly decreasing
functions, which is defined as follows.

Definition A.24 (Schwartz space). The Schwartz space S(Rn) of rapidly decaying functions is
defined as

S(Rn) =
{
f ∈ C ∞(Rn)

∣∣ ∀α, β ∈ Nn
0 : |f |α,β < ∞

}
,

where
|f |α,β = sup

x∈Rn
|xα Dβf(x)| for α, β ∈ Nn

0 .
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The space of Schwartz functions plays a central role in the theory of Fourier transforms.
Theorem A.25. The Fourier transform F : S(Rn) → S(Rn) is an automorphism of S(Rn). In
particular,

F−1(Ff) = f = F(F−1f) ∀ f ∈ S(Rn).
Proof. See, for example, [1, Theorem 4.15].

Since D(Rn) ⊂ S(Rn), we have S ′(Rn) ⊂ D ′(Rn) and the dual space of S(Rn) consists of a
special class of distributions. These are called tempered distributions.
Definition A.26 (Tempered distribution). The topological dual space of S(Rn) with respect to
the natural topology, denoted by S ′(Rn), is called the space of tempered distributions.

Since the Fourier transform of a Schwartz function is again a Schwartz function, we can now
define the Fourier transform of tempered distributions.
Definition A.27 (Fourier transform of tempered distributions). Let T ∈ S ′(Rn) be tempered.
Then, its Fourier transform FT ∈ S ′(Rn) is defined via

⟨FT, f⟩ = ⟨T,Ff⟩ for f ∈ S(Rn).
Analogously, its inverse Fourier transform F−1T ∈ S ′(Rn) is given by

⟨F−1T, f⟩ = ⟨T,F−1f⟩ for f ∈ S(Rn).
We remark that, if T ∈ S ′(Rn) is regular and given by T = Tf for some function f ∈ L1(Rn),

we have
FTf = TFf

due to Parseval’s identity. Hence, the definition of the classical and the distributional Fourier
transform coincide on L1(Rn).
Remark A.28. We have Lp(Rn) ⊂ S ′(Rn) for all 1 ≤ p ≤ ∞ in the sense that the functional
Tf : S(Rn) → R,

⟨Tf , ϕ⟩ =
∫
Rn
f(x)ϕ(x) dx for ϕ ∈ S(Rn),

is a tempered distribution. This observation implies that the Fourier transform is now defined
for all Lp-spaces. However, the Fourier transform of f ∈ Lp(Rn) with p > 2 is in general not a
function, but only a distribution, in contrast to the case of p ≤ 2.

Like the Schwartz space S(Rn), also the space of tempered distributions S ′(Rn) plays a
central role in Fourier analysis.
Theorem A.29. The Fourier transform F : S ′(Rn) → S ′(Rn) is an automorphism of S ′(Rn)
with respect to the weak topology. In particular, we have

F−1(Ff) = f = F(F−1f) ∀ f ∈ S ′(Rn).
Proof. See, for example, [1, Theorem 4.25].

Many properties of the regular Fourier transform carry over to the distributional Fourier
transform. As an example, we restate that F translates differentiation into multiplication.
To this end, we first remark that for T ∈ S ′(Rn) and α ∈ Nn

0 the distributional derivative
DαT ∈ S ′(Rn) is again tempered. Further, the multiplication with a function f ∈ C ∞(Rn) of
at most polynomial growth is well-defined via

⟨f · T, ϕ⟩ = ⟨T, f · ϕ⟩ for ϕ ∈ S(Rn).
Proposition A.30. For T ∈ S ′(Rn) and α ∈ Nn

0 , we have

F(DαT ) = i|α| xα FT.

Proof. See, for example, [16, Theorem 7.15].
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A.2 Sobolev spaces
Sobolev spaces play an important role in the understanding of the ill-posedness of the CT
reconstruction problem. For this reason, we now define Sobolev spaces of fractional order and
list some basic properties. This is based on a characterization of regular Sobolev spaces by
means of the Fourier transform.

We begin with the standard definition of Sobolev spaces. To this end, let us recall that for a
domain Ω ⊆ Rn, a multi-index α ∈ Nn

0 and a distribution T ∈ D ′(Ω) the derivative Dαf ∈ D ′(Ω)
is defined via

⟨DαT, ϕ⟩ = (−1)|α| ⟨T,Dαϕ⟩ for ϕ ∈ D(Ω).

In general, the distributional derivative Dαf of a function f ∈ L1
loc(Ω) ⊂ D ′(Ω) is not a function

itself. But in case it is, Dαf is called weak derivative of f .

Definition A.31 (Weak derivative). Let Ω ⊆ Rn be a domain, f ∈ L1
loc(Ω) be locally integrable

and α ∈ Nn
0 . If there exists a function g ∈ L1

loc(Ω) with∫
Ω
g(x)ϕ(x) dx = (−1)|α|

∫
Ω
f(x) Dαϕ(x) dx ∀ϕ ∈ D(Ω),

then f is called weakly differentiable on Ω with weak derivative Dαf = g. If the weak derivatives
Dαf ∈ L1

loc(Ω) exist for all |α| ≤ k with k ∈ N, then f is called k-times weakly differentiable.

Remark A.32. Weak derivatives are uniquely determined almost everywhere on Ω according to
the fundamental lemma of variational calculus.

Now, the common Sobolev spaces are defined as spaces of functions whose weak derivatives
belong to certain Lp-spaces.

Definition A.33 (Sobolev space). Let Ω ⊆ Rn be a domain, 1 ≤ p ≤ ∞ and k ∈ N0. Then,
the Sobolev space Hk,p(Ω) is defined as

Hk,p(Ω) =
{
f ∈ Lp(Ω)

∣∣ ∀ |α| ≤ k : Dαf ∈ Lp(Ω)
}

and equipped with the Sobolev norm

∥f∥Hk,p(Ω) =


(∑

|α|≤k ∥Dαf∥p
Lp(Ω)

)1/p

for p < ∞
max|α|≤k ∥Dαf∥L∞(Ω) for p = ∞.

Remark A.34. For p = 2 we simply write Hk(Ω) ≡ Hk,2(Ω) and these spaces are Hilbert spaces
with the inner product

(f, g)Hk(Ω) =
∑

|α|≤k

(Dαf,Dαg)L2(Ω) for f, g ∈ Hk(Ω).

For p = 2, the Fourier transform F translates weak differentiation into multiplication and
vice versa.

Lemma A.35. Let f ∈ L2(Rn) and α ∈ Nn
0 so that the weak derivative Dαf is also in L2(Rn).

Then, we have
F(Dαf) = i|α| xα Ff

and, if xαf ∈ L2(Rn),
F(xαf) = i|α| DαFf.

Proof. See, for example, [1, Lemma 4.28].
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This lemma yields the following characterization of regular Sobolev spaces by means of the
Fourier transform.
Theorem A.36 (Characterization of Hk(Rn)). For k ∈ N we have

f ∈ Hk(Rn) ⇐⇒
∫
Rn

(1 + ∥ω∥2
Rn)k |Ff(ω)|2 dω < ∞.

Proof. See, for example, [1, Theorem 4.29].

Observe that the above theorem relates the weak differentiability of a function f ∈ L2(Rn)
to the decay properties of its Fourier transform Ff . This characterization does not only give a
useful tool to investigate the smoothness of a function but also offers a possibility to generalize
the definition of Sobolev spaces Hk(Rn) of integer order to spaces Hα(Rn) of arbitrary smoothness
order α ∈ R. However, if α < 0, we have to enlarge the basic set from L2(Rn) to the space of
tempered distributions S ′(Rn).
Definition A.37 (Sobolev space of fractional order). The Sobolev space Hα(Rn) of fractional
order α ∈ R is defined as

Hα(Rn) =
{
f ∈ S ′(Rn)

∣∣ ∥f∥Hα(Rn) < ∞
}
,

where the Sobolev norm ∥ · ∥Hα(Rn) is given by

∥f∥2
Hα(Rn) =

∫
Rn

(1 + ∥ω∥2
Rn)α |Ff(ω)|2 dω.

Further, for an open subset Ω ⊆ Rn, we define the Sobolev space Hα
0 (Ω) by

Hα
0 (Ω) =

{
f ∈ Hα(Rn)

∣∣ supp(f) ⊆ Ω
}
,

where the support supp(f) of a tempered distribution f ∈ S ′(Rn) is defined as the complement
of the largest open set U ⊂ Rn for which ⟨f, ϕ⟩ = 0 for all ϕ ∈ S(Rn) with supp(ϕ) ⊂ U .

For α ∈ N0, the above theorem shows that the space Hα(Rn) consists of those functions
whose (distributional) derivatives up to order α are square-integrable. Therefore, the definition
of fractional Sobolev spaces is compatible with the definition of classical Sobolev spaces. In
particular, for α = 0 we simply have

H0(Rn) = L2(Rn).
By defining the equivalent Sobolev norms ∥ · ∥α on Hα(Rn) for α ∈ R via

∥f∥2
α = (2π)−n

∫
Rn

(1 + ∥ω∥2
Rn)α |Ff(ω)|2 dω for f ∈ Hα(Rn),

we further obtain
∥ · ∥0 = ∥ · ∥L2(Rn)

according to the Rayleigh-Plancherel theorem.

We close this section with some final remarks on Sobolev spaces.
(i) The Sobolev space Hα(Rn) is a Hilbert space with the inner product

(f, g)Hα(Rn) =
∫
Rn

(1 + ∥ω∥2
Rn)α Ff(ω) Fg(ω) dω for f, g ∈ Hα(Rn).

(ii) For α < β we have Hβ(Rn) ⊂ Hα(Rn) and, in particular,
Hα(Rn) ⊂ L2(Rn) ∀α > 0.

Thus, for α > 0, the Sobolev space Hα(Rn) can equivalently be defined as
Hα(Rn) =

{
f ∈ L2(Rn)

∣∣ ∥f∥α < ∞
}
.

(iii) The dual space of Hα(Rn) is topologically isomorphic to H−α(Rn).
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A.3 Elements of measure theory
We finally list some results from measure theory that are used throughout the course. To this
end, recall that a measure space is a triple (X,A, µ), where X is a set, A is a σ-algebra on X
collecting the measurable subsets of X and µ is a measure on (X,A).

We start with the following variant of Fubini’s theorem.
Theorem A.38 (Fubini). Let (X,A, µ) and (Y, E , ν) be σ-finite measure spaces. Furthermore,
let f : X × Y → C be (µ× ν)-measurable. Define the functions

φ(x) =
∫

Y
f(x, ·) dν for x ∈ X and ψ(y) =

∫
X
f(·, y) dµ for y ∈ Y

as well as

Φ(x) =
∫

Y
|f(x, ·)| dν for x ∈ X and Ψ(y) =

∫
X

|f(·, y)| dµ for y ∈ Y.

(i) If 0 ≤ f ≤ ∞, then φ is µ-measurable, ψ is ν-measurable and∫
X
φ dµ =

∫
X×Y

f d(µ× ν) =
∫

Y
ψ dν.

(ii) If f is real-valued and if ∫
X

Φ dµ < ∞ or
∫

Y
Ψ dν < ∞,

then f ∈ L1(µ× ν).

(iii) If f ∈ L1(µ × ν), then we have f(x, ·) ∈ L1(ν) for almost all x ∈ X, f(·, y) ∈ L1(µ) for
almost all y ∈ Y , φ ∈ L1(µ), ψ ∈ L1(ν), and∫

X
φ dµ =

∫
X×Y

f d(µ× ν) =
∫

Y
ψ dν.

Proof. See, for example, [15, Theorem 8.8].

We continue with the change of variables formula for the Lebesgue measure λ.
Theorem A.39 (Change of variables). Let Ω,Σ ⊂ Rd be non-empty, open and φ : Σ → Ω
be a diffeomorphism, i.e., φ is invertible and φ as well as φ−1 are continuously differentiable.
Furthermore, let f : Ω → C be Lebesgue-measurable. If 0 ≤ f ≤ ∞ or f ∈ L1(Ω), then∫

Ω
f dλ =

∫
Σ

| det(Jφ))| (f ◦ φ) dλ,

where Jφ : Σ → Rd×d denotes the Jacobian of φ.
Proof. See, for example, [1, Theorem 2.69].

We close this section with Lebesgue’s theorem on dominated convergence.
Theorem A.40 (Dominated convergence). Let (X,A, µ) be a measure space and suppose that
(fn)n∈N is a sequence of complex-valued measurable functions such that

f(x) = lim
n→∞

fn(x)

exists for almost all x ∈ X. If there is a function g ∈ L1(µ) such that

|fn(x)| ≤ g(x) ∀n ∈ N, x ∈ X,

then f ∈ L1(µ) and

lim
n→∞

∫
X

|fn − f | dµ = 0 and lim
n→∞

∫
X
fn dµ =

∫
X
f dµ.

Proof. See, for example, [15, Theorem 1.34].
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